Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313556

RESUMO

'Anode-free' or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.

2.
Small ; 19(14): e2205412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653934

RESUMO

The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.

3.
Langmuir ; 39(31): 11063-11072, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490748

RESUMO

Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool for grafting functional polymers from metal surfaces. It depends on the immobilization of suitable initiators on the surface before radical polymerization. Herein, we report a set of bifunctional initiators bearing a phosphonic acid group for surface binding and a bromoisobutyramide moiety for SI-ATRP. We have analyzed the impact of the connecting alkyl spacers on the grafting process of (vinylbenzyl)trimethylammonium chloride (VBTAC) from titanium as a base material. The thickness of the grafted polymer increased with the spacer length of the initiator. We obtained chemically stable polycationic surfaces with high charge densities of ∼1016 N+/cm2 leading to efficient contact activity of modified titanium coupons against S. aureus. Notably, SI-ATRP grafting was efficient with VBTAC as a styrene-derived ammonium compound. Thus, the reported protocol avoids post-grafting quaternization with toxic alkylating reagents.

4.
Langmuir ; 39(49): 17959-17971, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033196

RESUMO

The use of surface-grafted polymer brushes with combined low-fouling and antibacterial functionality is an attractive strategy to fight biofilm formation. This report describes a new styrene derivative combining a quaternary ammonium group with a sulfobetaine group in one monomer. Surface-initiated polymerization of this monomer on titanium and a polyethylene (PE) base material gave bifunctional polymer brush layers. Grafting was achieved via surface-initiated atom transfer radical polymerization from titanium or heat-induced free-radical polymerization from plasma-activated PE. Both techniques gave charged polymer layers with a thickness of over 750 nm, as confirmed by ToF-SIMS-SPM measurements. The chemical composition of the brush polymers was confirmed by XPS and FT-IR analysis. The surface charge, characterized by the ζ potential, was positive at different pH values, and the number of solvent-accessible excess ammonium groups was found to be ∼1016 N+/cm2. This led to strong antibacterial activity against Gram-positive and Gram-negative bacteria that was superior to a structurally related contact-active polymeric quaternary ammonium brush. In addition to this antibacterial activity, good low-fouling properties of the dual-function polymer brushes against Gram-positive and Gram-negative bacteria were found. This dual functionality is most likely due to the combination of antibacterial quaternary ammonium groups with antifouling sulfobetaines. The combination of both groups in one monomer allows the preparation of bifunctional brush polymers with operationally simple polymerization techniques.

5.
Angew Chem Int Ed Engl ; 62(7): e202213228, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416271

RESUMO

Lithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li6 PS5 Cl and Li5.5 PS4.5 Cl1.5 to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth. Electrochemical measurements, gas analysis and time-of-flight secondary ion mass spectrometry indicate that the Li5.5 PS4.5 Cl1.5 shows pronounced electrochemical decomposition at lower potentials. The chemical reaction at higher voltages leads to more gaseous degradation products, but a lower fraction of solid oxygenated phosphorous and sulfur species. This in turn leads to a decreased interfacial resistance and thus a higher cell performance.

6.
Rapid Commun Mass Spectrom ; 36(12): e9300, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312121

RESUMO

RATIONALE: In osteoporosis research, strontium ions (Sr2+ ) have emerged as promising therapeutic agent in modified bone cements for better fracture healing. Modeling of Sr2+ dispersion in bone could be used as a predictive tool for the evaluation of functionalized biomaterials in future. Therefore, determination of experimental parameters for Sr2+ transport in bone is essential. In this study, we focus on the determination of Sr2+ diffusion in viscous bovine bone marrow by time-of-flight secondary ion mass spectrometry (ToF-SIMS). METHODS: For this comparatively fast diffusion (FD) experiment, a specific experimental protocol of ToF-SIMS depth profiling under cryogenic conditions was developed. The validity of our experimental approach is proven by a time-dependent experimental series. Furthermore, 2D and 3D mass spectrometric imaging analysis was used to study Sr2+ surface and bulk distribution within bovine bone marrow. RESULTS: Detailed 2D and 3D mass spectrometric imaging analysis revealed that Sr2+ diffusion is slower in bone marrow areas with high intensity of lipid and fatty acid signals than in areas with less lipid content. The Sr2+ transport within this passive model can be described by Fickian diffusion. Average diffusion coefficients of Sr2+ in bovine bone marrow were obtained from diffusion profiles in FD areas (Dbovine,FD = [2.09 ± 2.39]·10-9 cm2 s-1 ), slow diffusion areas (Dbovine,SD = [1.52 ± 1.80]·10-10 cm2 s-1 ), and total area diffusion (Dbovine,TA = [1.94 ± 2.40]·10-9 cm2 s-1 ). CONCLUSIONS: We were able to show that cryo-ToF-SIMS is a useful tool for the characterization of rapid diffusion in water-containing highly viscous media. To the best of our knowledge, this is the first reported experimental approach for the investigation of the distribution of low concentrated therapeutic agents in bone marrow. Overall, our results provide important insights about Sr2+ diffusion in bovine bone marrow.


Assuntos
Medula Óssea , Espectrometria de Massa de Íon Secundário , Animais , Cimentos Ósseos/química , Bovinos , Lipídeos , Estrôncio/química
7.
Analyst ; 147(18): 4141-4157, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35979961

RESUMO

Strontium (Sr2+) ions are an effective therapeutic agent for the healing of osteoporotic bone fractures and are therefore used, for example, in form of strontium-modified bone cements. In order to reduce animal testing in further implant materials development in the future, a simulation of the Sr2+ release and transport in bone would be helpful. For such a simulation, knowledge of the experimental parameters for Sr2+ mobility in different compartments of bone (mineralised bone, bone marrow) is essential. In a previous study, we developed an experimental protocol for transport studies in bovine bone marrow by time-of-flight secondary ion mass spectrometry (ToF-SIMS). In the current proof-of-concept study, we investigated Sr2+ diffusion for the first time in bone marrow of rat bone sections. Additionally, orbitrap secondary ion mass spectrometry (OrbiSIMS) was applied for unambiguous signal identification of lipids and fatty acid species in rat bone marrow. Detailed 2D and 3D mass spectrometric imaging analyses, depth profiling as well as OrbiSIMS spectrometric analysis revealed faster Sr2+ diffusion in rat bone marrow areas with low intensity of lipid and fatty acid signals than in areas with higher lipid/fatty acid content. These results could be confirmed by histological staining and additional analysis of Sr2+ diffusion into pure fat sections.


Assuntos
Medula Óssea , Espectrometria de Massa de Íon Secundário , Animais , Bovinos , Ácidos Graxos , Lipídeos , Ratos , Estrôncio
8.
Analyst ; 147(2): 333-340, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34932048

RESUMO

Highlighter inks were analyzed by means of soft Desorption/Ionization induced by Neutral SO2 clusters (DINeC) in combination with mass spectrometry (MS). The dye molecules of the different inks were directly desorbed from dots of ink drawn on arbitrary substrates. Fragmentation free spectra were observed and the dyes used in the dye mixtures of the different highlighter inks were unambiguously identified. The soft nature of cluster-induced desorption was used to investigate the decomposition of the dye molecules induced by either heat or UV-light. The two processes lead to different decomposition products which are clearly distinguished in the DINeC spectra. The two different degradation processes can thus be discriminated using DINeC-MS.

9.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153127

RESUMO

The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio , Fêmur , Gelatina , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/terapia , Fosfatos , Estrôncio , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Técnicas de Cocultura , Feminino , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Gelatina/química , Gelatina/farmacologia , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Fosfatos/química , Fosfatos/farmacologia , Ratos , Ratos Sprague-Dawley , Estrôncio/química , Estrôncio/farmacologia
10.
Anal Chem ; 90(15): 8856-8864, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944823

RESUMO

A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 µm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 µm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 µm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods.


Assuntos
Cabeça do Fêmur/química , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos , Crioultramicrotomia/métodos , Humanos , Imagem Óptica/métodos
11.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423942

RESUMO

The development of new and better implant materials adapted to osteoporotic bone is still urgently required. Therefore, osteoporotic muscarinic acetylcholine receptor M3 (M3 mAChR) knockout (KO) and corresponding wild type (WT) mice underwent osteotomy in the distal femoral metaphysis. Fracture gaps were filled with a pasty α-tricalcium phosphate (α-TCP)-based hydroxyapatite (HA)-forming bone cement containing mesoporous bioactive CaP-SiO2 glass particles (cement/MBG composite) with or without Brain-Derived Neurotrophic Factor (BDNF) and healing analyzed after 35 days. Histologically, bone formation was significantly increased in WT mice that received the BDNF-functionalized cement/MBG composite compared to control WT mice without BDNF. Cement/MBG composite without BDNF increased bone formation in M3 mAChR KO mice compared to equally treated WT mice. Mass spectrometric imaging showed that the BDNF-functionalized cement/MBG composite implanted in M3 mAChR KO mice was infiltrated by newly formed tissue. Leukocyte numbers were significantly lower in M3 mAChR KO mice treated with BDNF-functionalized cement/MBG composite compared to controls without BDNF. C-reactive protein (CRP) concentrations were significantly lower in M3 mAChR KO mice that received the cement/MBG composite without BDNF when compared to WT mice treated the same. Whereas alkaline phosphatase (ALP) concentrations in callus were significantly increased in M3 mAChR KO mice, ALP activity was significantly higher in WT mice. Due to a stronger effect of BDNF in non osteoporotic mice, higher BDNF concentrations might be needed for osteoporotic fracture healing. Nevertheless, the BDNF-functionalized cement/MBG composite promoted fracture healing in non osteoporotic bone.


Assuntos
Cimentos Ósseos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Vidro/química , Fraturas por Osteoporose/tratamento farmacológico , Fosfatase Alcalina/metabolismo , Animais , Cimentos Ósseos/farmacologia , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/enzimologia , Calo Ósseo/patologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fraturas por Osteoporose/sangue , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/patologia , Porosidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Muscarínico M3/metabolismo , Espectrometria por Raios X , Microtomografia por Raio-X
12.
Anal Bioanal Chem ; 409(18): 4425-4435, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516281

RESUMO

Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage of the cells.


Assuntos
Osso e Ossos/citologia , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Osteoporose/patologia , Adipogenia , Diferenciação Celular , Humanos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real/métodos
13.
J Am Chem Soc ; 137(20): 6559-68, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25867455

RESUMO

Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data.

14.
Histochem Cell Biol ; 144(5): 491-507, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26210855

RESUMO

Bone loss is a symptom related to disease and age, which reflects on bone cells and ECM. Discrepant regulation affects cell proliferation and ECM localization. Rat model of osteoporosis (OVX) was investigated against control rats (Sham) at young and old ages. Biophysical, histological and molecular techniques were implemented to examine the underlying cellular and extracellular matrix changes and to assess the mechanisms contributing to bone loss in the context of aging and the widely used osteoporotic models in rats. Bone loss exhibited a compromised function of bone cells and infiltration of adipocytes into bone marrow. However, the expression of genes regulating collagen catabolic process and adipogenesis was chronologically shifted in diseased bone in comparison with aged bone. The data showed the involvement of Wnt signaling inhibition in adipogenesis and bone loss due to over-expression of SOST in both diseased and aged bone. Further, in the OVX animals, an integrin-mediated ERK activation indicated the role of MAPK in osteoblastogenesis and adipogenesis. The increased PTH levels due to calcium and estrogen deficiency activated osteoblastogenesis. Thusly, RANKL-mediated osteoclastogenesis was initiated. Interestingly, the data show the role of MEPE regulating osteoclast-mediated resorption at late stages in osteoporotic bone. The interplay between ECM and bone cells change tissue microstructure and properties. The involvement of Wnt and MAPK pathways in activating cell proliferation has intriguing similarities to oncogenesis and myeloma. The study indicates the importance of targeting both pathways simultaneously to remedy metabolic bone diseases and age-related bone loss.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Desnutrição/patologia , Osteoporose/patologia , Ovariectomia , Adipogenia/efeitos dos fármacos , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Colágeno , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Marcadores Genéticos/genética , Integrinas/metabolismo , Desnutrição/metabolismo , Osteoporose/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Anal Bioanal Chem ; 407(16): 4555-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869483

RESUMO

The detection and localization of polymer-based nanoparticles in human bone marrow-derived stromal cells (hBMSC) by time-of-flight secondary ion mass spectrometry (ToF-SIMS) is reported as an example for the mass spectrometry imaging of organic nanoparticles in cell environments. Polyelectrolyte complex (PEC) nanoparticles (NP) made of polyethylenimine (PEI) and cellulose sulfate (CS), which were developed as potential drug carrier and coatings for implant materials, were chosen for the imaging experiments. To investigate whether the PEI/CS-NP were taken up by the hBMSC ToF-SIMS measurements on cross sections of the cells and depth profiling of whole, single cells were carried out. Since the mass spectra of the PEI/CS nanoparticles are close to the mass spectra of the cells principal component analysis (PCA) was performed to get specific masses of the PEI/CS-NP. Mass fragments originating from the NP compounds especially from cellulose sulfate could be used to unequivocally detect and image the PEI/CS-NP inside the hBMSC. The findings were confirmed by light and transmission electron microscopy. Graphical Abstract During ToF-SIMS analysis Bi3 (+) primary ions hit the sample surface and so called secondary ions (SI) are emitted and detected in the mass analyser. Exemplary mass images of cross sections of human mesenchymal stromal cells (red; m/z = 86.1 u) cultured with organic nanoparticles (green; m/z = 143.0 u) were obtained.


Assuntos
Células-Tronco Mesenquimais/química , Nanopartículas/análise , Compostos Orgânicos/análise , Células Cultivadas , Humanos , Microscopia Eletrônica de Transmissão , Análise de Componente Principal , Espectrometria de Massa de Íon Secundário
16.
BMC Musculoskelet Disord ; 16: 5, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636336

RESUMO

BACKGROUND: Recently, analysis of bone from knockout mice identified muscarinic acetylcholine receptor subtype M3 (mAChR M3) and nicotinic acetylcholine receptor (nAChR) subunit α2 as positive regulator of bone mass accrual whereas of male mice deficient for α7-nAChR (α7KO) did not reveal impact in regulation of bone remodeling. Since female sex hormones are involved in fair coordination of osteoblast bone formation and osteoclast bone degradation we assigned the current study to analyze bone strength, composition and microarchitecture of female α7KO compared to their corresponding wild-type mice (α7WT). METHODS: Vertebrae and long bones of female 16-week-old α7KO (n = 10) and α7WT (n = 8) were extracted and analyzed by means of histological, radiological, biomechanical, cell- and molecular methods as well as time of flight secondary ion mass spectrometry (ToF-SIMS) and transmission electron microscopy (TEM). RESULTS: Bone of female α7KO revealed a significant increase in bending stiffness (p < 0.05) and cortical thickness (p < 0.05) compared to α7WT, whereas gene expression of osteoclast marker cathepsin K was declined. ToF-SIMS analysis detected a decrease in trabecular calcium content and an increase in C4H6N(+) (p < 0.05) and C4H8N(+) (p < 0.001) collagen fragments whereas a loss of osteoid was found by means of TEM. CONCLUSIONS: Our results on female α7KO bone identified differences in bone strength and composition. In addition, we could demonstrate that α7-nAChRs are involved in regulation of bone remodelling. In contrast to mAChR M3 and nAChR subunit α2 the α7-nAChR favours reduction of bone strength thereby showing similar effects as α7ß2-nAChR in male mice. nAChR are able to form heteropentameric receptors containing α- and ß-subunits as well as the subunits α7 can be arranged as homopentameric cation channel. The different effects of homopentameric and heteropentameric α7-nAChR on bone need to be analysed in future studies as well as gender effects of cholinergic receptors on bone homeostasis.


Assuntos
Reabsorção Óssea , Osso e Ossos/anatomia & histologia , Osteogênese/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Fenômenos Biomecânicos , Densidade Óssea , Medula Óssea/irrigação sanguínea , Osso e Ossos/ultraestrutura , Feminino , Masculino , Camundongos Knockout , Microcirculação , Fatores Sexuais
17.
Phys Chem Chem Phys ; 16(12): 5465-74, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24522877

RESUMO

This Perspective aims to inform the heterogeneous catalysis and materials science community about the recent advances in Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) to characterize catalytic solids by taking large model H-ZSM-5 zeolite crystals as a showcase system. SIMS-based techniques have been explored in the 1980-1990's to study porous catalyst materials but, due to their limited spectral and spatiotemporal resolution, there was no real major breakthrough at that time. The technical advancements in SIMS instruments, namely improved ion gun design and new mass analyser concepts, nowadays allow for a much more detailed analysis of surface species relevant to catalytic action. Imaging with high mass and lateral resolution, determination of fragment ion patterns, novel sputter ion concepts as well as new mass analysers (e.g. ToF, FTICR) are just a few novelties, which will lead to new fundamental insight from SIMS analysis of heterogeneous catalysts. The Perspective article ends with an outlook on instrumental innovations and their potential use for catalytic systems other than zeolite crystals.

18.
Environ Pollut ; 345: 123502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316252

RESUMO

Microplastics (MPs) pose a global concern due to their ubiquitous distribution. Once in the environment, they are subject to aging, which changes their chemical-physical properties and ability to interact with organic pollutants, such as pesticides. Therefore, this study investigated the interaction of the hydrophobic herbicide terbuthylazine (TBA), which is widely used in agriculture, with artificially aged polyethylene (PE) MP (PE-MP) to understand how aging affects its sorption. PE was aged by an accelerated weathering process including UV irradiation, hydrogen peroxide, and ultrasonic treatment, and aged particles were characterized in comparison to pristine particles. Sorption kinetics were performed for aged and pristine materials, while further sorption studies with aged PE-MP included determining environmental factors such as pH, temperature, and TBA concentration. Sorption of TBA was found to be significantly lower on aged PE-MP compared to pristine particles because aging led to the formation of oxygen-containing functional groups, resulting in a reduction in hydrophobicity and the formation of negatively charged sites on oxidized surfaces. For pristine PE-MP, sorption kinetics were best described by the pseudo-second-order model, while it was intra-particle diffusion for aged PE-MP as a result of crack and pore formation. Sorption followed a decreasing trend with increasing pH, while it became less favorable at higher temperatures. The isotherm data revealed a complex sorption process on altered, heterogeneous surfaces involving hydrophobic interactions, hydrogen bonding, and π-π interactions, and the process was best described by the Sips adsorption isotherm model. Desorption was found to be low, confirming a strong interaction. However, thermodynamic results imply that increased temperatures, such as those resulting from climate change, could promote the re-release of TBA from aged PE-MP into the environment. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed TBA sorption onto PE.


Assuntos
Praguicidas , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Praguicidas/análise , Triazinas/análise , Polietileno/química , Adsorção , Poluentes Químicos da Água/análise
19.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602440

RESUMO

In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.


Assuntos
Atrazina , Herbicidas , Oligoquetos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aminoácidos , Fosfatidilcolinas , Lasers
20.
ACS Appl Mater Interfaces ; 16(20): 26195-26208, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722801

RESUMO

To complement or outperform lithium-ion batteries with liquid electrolyte as energy storage devices, a high-energy as well as high-power anode material must be used in solid-state batteries. An overlooked class of anode materials is the one of conversion/alloy active materials (e.g., SnO2, which is already extensively studied in liquid electrolyte-based batteries). Conversion/alloy active materials offer high specific capacities and often also fast lithium-ion diffusion and reaction kinetics, which are required for high C-rates and application in high-energy and high-power devices such as battery electric vehicles. To date, there are only very few reports on conversion/alloy active materials─namely, SnO2─as anode material in sulfide-based solid-state batteries, with a relatively complex electrode design. Otherwise, conversion-alloy active materials are used as a seed layer or interlayer for a homogeneous Li deposition or to mitigate the formation and growth of the SEI, respectively. Within this work, four different conversion/alloy active materials─SnO2, Sn0.9Fe0.1O2, ZnO, and Zn0.9Fe0.1O─are synthesized and incorporated as negative active materials ("anodes") in composite electrodes into SSBs with Li6PS5Cl as solid electrolyte. The structure and the microstructure of the as-synthesized active materials and composite electrodes are investigated by XRD, SEM, and FIB-SEM. All active materials are evaluated based on their C-rate performance and long-term cyclability by galvanostatic cycling under a constant pressure of 40 MPa. Furthermore, light is shed on the degradation processes that take place at the interface between the active material and solid electrolyte. It is evidenced that the decomposition of Li6PS5Cl to LiCl, Li2S, and Li3P at the anode is amplified by Fe substitution. Lastly, a 2D sheet electrode is designed and cycled to tackle the interfacial degradation processes. This approach leads to an improved C-rate performance (factor of 3) as well as long-term cyclability (factor of 2.3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA