Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Physiol Mol Biol Plants ; 28(1): 107-121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35210716

RESUMO

Salt stress can significantly disrupt the functioning of lichens which are self-sufficient symbiotic organisms inhabiting various severe environments. The aim was to test the effect of salt and sucrose on the photosynthetic efficiency of two selected epiphytic lichens inhabiting the interior of the land. Firstly, we compared the effect of salt and sucrose solutions of different concentrations. Secondly, the effect of salt and sucrose solutions with identical osmotic pressures was compared. The results showed that short-term salt stress leads to a significant reduction of F V /F M , greater changes in chlorophyll fluorescence parameters and OJIP transients compared to the osmotic effects induced by sucrose. This proved that the negative impact of salt stress is associated primarily with ionic effects. The most symptomatic effect of the ionic stress was a significant reduction of the utilisation of trapped energy in electron transport and thereby down-regulation of electron transfer. Since lichens are resistant to a temporary lack of water, ionic stress could have more serious consequences than osmotic stress itself. Hypogymnia physodes was more sensitive to salt stress than Pseudevernia furfuracea, but the reduction of photosynthetic efficiency was not permanent since after 24 h F V /F M returned to the level characteristic for healthy lichens. Nevertheless, repeated exposure to salt may reduce the vitality of lichens growing along communication routes sprinkled with salt in the winter season. Finally, the changes in certain JIP-test parameters were stronger than F V /F M , thus they could be better indicators of salt stress in lichens. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-022-01134-2.

2.
Ecotoxicol Environ Saf ; 174: 26-34, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30818257

RESUMO

The epigeic lichens Cladonia rei and Diploschistes muscorum are effective heavy-metal-tolerant colonisers of highly polluted and disturbed sites. In this study we compare their bioaccumulation capacities, accumulation patterns, and responses to heavy-metal stress, as expressed in terms of cell membrane damage. We also aim at verifying the relationships between cell membrane damage and levels of soil pollution with heavy metals, and thereby to identify the bioindicative value of this physiological parameter. Total and intracellular concentrations of Zn, Pb, Cd, As, Cu, and Ni were measured in 140 samples of lichens and corresponding soil, collected from variously contaminated sites. Relative electrical conductivity (EC%) values were determined concurrently in the lichen samples. The studied lichens differ considerably in intracellular uptake susceptibility and the related reduction in membrane integrity. In C. rei thalli, more than half of Zn, Pb, Cd, and As loads are accumulated extracellularly, whereas D. muscorum exhibits a tendency towards intracellular accumulation of the same elements. This property is clearly reflected in cell membrane damage, which is considerably greater in the latter species irrespective of study site. This indicates that intracellular heavy-metal accumulation affects the level of cell membrane damage. Two soil pollution classes were distinguished for both lichens based on element contents in host-substrate samples. The losses of cell membrane integrity in lichen thalli are related to these classes. EC% values above 16 in C. rei and above 20 in D. muscorum suggest elevated levels of heavy metals in the soil. Consequently, this physiological parameter can serve as an early warning indicator for detection of elevated metal concentrations in soil. The biomonitoring method proposed here involves common and widespread lichen species and can be widely applied in post-industrial areas.


Assuntos
Líquens/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Membrana Celular/efeitos dos fármacos , Condutividade Elétrica , Monitoramento Ambiental , Líquens/efeitos dos fármacos , Metais Pesados/análise , Metais Pesados/toxicidade , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Mycorrhiza ; 27(2): 83-94, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27581153

RESUMO

While a number of recent studies have revealed that arbuscular mycorrhizal fungi (AMF) can mediate invasive plant success, the influence of these symbionts on the most successful and high-impact invaders is largely unexplored. Two perennial herbs of this category of invasive plants, Rudbeckia laciniata and Solidago gigantea (Asteraceae), were thus tested in a pot experiment to determine whether AMF influence their growth, the concentration of phosphorus in biomass, and photosynthesis. The following treatments, including three common AMF species, were prepared on soils representative of two habitats that are frequently invaded by both plants, namely fallow and river valley: (1) control-soil without AMF, (2) Rhizophagus irregularis, (3) Funneliformis mosseae, and (4) Claroideoglomus claroideum. The invaders were strongly dependent on AMF for their growth. The mycorrhizal dependency of R. laciniata was 88 and 63 % and of S. gigantea 90 and 82 % for valley and fallow soils, respectively. The fungi also increased P concentration in their biomass. However, we found different effects of the fungal species in the stimulation of plant growth and P acquisition, with R. irregularis and C. claroideum being the most and least effective symbionts, respectively. None of AMF species had an impact on the photosynthetic performance indexes of both plants. Our findings indicate that AMF have a direct effect on the early stages of R. laciniata and S. gigantea growth. The magnitude of the response of both plant species to AMF was dependent on the fungal and soil identities. Therefore, the presence of particular AMF species in a site may determine the success of their invasion.


Assuntos
Glomeromycota/fisiologia , Espécies Introduzidas , Micorrizas/fisiologia , Fósforo/metabolismo , Rudbeckia/microbiologia , Solidago/microbiologia , Raízes de Plantas , Rudbeckia/crescimento & desenvolvimento , Rudbeckia/metabolismo , Solidago/crescimento & desenvolvimento , Solidago/metabolismo
4.
Arch Environ Contam Toxicol ; 70(2): 418-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26155778

RESUMO

Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Líquens/fisiologia , Metalurgia , Metais Pesados/análise , Ascomicetos , Líquens/química
5.
Symbiosis ; 65(3): 101-115, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26160995

RESUMO

In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.

6.
Arch Environ Contam Toxicol ; 67(4): 578-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25034334

RESUMO

In this study, we examined oribatid fauna of strongly contaminated post-smelting dumps (southern Poland) that exist in the substrate and are associated with the most frequent lichen, Cladonia rei. Due to artificial origin of the substrate and the extremely high contamination with heavy metals, the studied dumps are unique in Europe in terms of unfavourable life conditions. In total, 2,936 specimens of Oribatida, representing 50 oribatid species, were sampled on 10 dumps and a reference site. Thalli of C. rei act as an island for soil oribatid mites on extremely contaminated post-smelting dumps. Both abundance and species richness of oribatid fauna collected from C. rei thalli were significantly greater than those recorded in the dump's substrate. The pool of oribatid species that was able to persist in extremely high doses of heavy metals was comparatively broad. However, only one species, Tectocepheus velatus, was able to achieve high abundances on all dumps. Three different responses of species (tolerant, sensitive, and indifferent) to heavy-metal contamination were recognised. Redundancy analysis indicated that highly increased levels of heavy metals, as well as K content, C/N ratio, and pH value, were the main factors that influence the composition and distribution of species. The concentrations of heavy metals (both essential elements (zinc) as well as xenobiotics (lead, cadmium) in T. velatus from the most contaminated dumps were not increased compared with those observed in moderately contaminated soils.


Assuntos
Monitoramento Ambiental , Locais de Resíduos Perigosos , Líquens/crescimento & desenvolvimento , Metais Pesados/toxicidade , Ácaros/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Animais , Ecossistema , Líquens/química , Metais Pesados/análise , Polônia , Solo , Poluentes do Solo/análise
7.
Environ Monit Assess ; 186(9): 5897-910, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24906242

RESUMO

This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Briófitas/química , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Líquens/química , Metais/análise
8.
Chemosphere ; 316: 137772, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623603

RESUMO

Excessive use of plant growth stimulants and pesticides is currently a considerable problem, especially in agriculture, horticulture, and arboriculture. Understanding the impacts of these compounds and their combinations on non-target organisms is crucial to minimize unintended consequences, while maintaining their use in plant protection. The aim of this study was to test how long-term spraying with different solutions of natural biostimulator chitosan, synthetic fungicide Switch 62.5 WG, and their combinations affects the physiology of epiphytic lichen Xanthoria parietina naturally occurring in fruit orchards and farmlands. We showed that fungicides composed of fludioxionil and cypronidil, as well as the combined use of such fungicides together with chitosan, can cause the considerable impairment of lichen physiology, and these disturbances relate to both algal and fungal partners of the symbiotic association. This negative effect was especially visible in the loss of cell membrane integrity, the high level of membrane lipid peroxidation, and changes in chlorophyll fluorescence parameters on the last day of the experiment. The combined use of these agents also leads to clear disturbances in the functioning of the mitochondrial respiratory chain, which was manifested by increased NADH dehydrogenase activity, while the use of these compounds separately led to a decrease in the activity of this enzyme. We concluded that the regular use of these agents in fruit tree cultivation may cause serious ecological consequences for epiphytic lichen communities as a result of the death of lichen thalli. This study suggests that the impact of some plant protection agents, both individually and in combinations, merits further attention in terms of their impact on non-target fungi.


Assuntos
Quitosana , Fungicidas Industriais , Líquens , Fungicidas Industriais/metabolismo , Quitosana/farmacologia , Membrana Celular , Líquens/metabolismo
9.
Environ Sci Pollut Res Int ; 30(10): 28192-28205, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399301

RESUMO

Nitrogen pollution and excessive salinity are commonly regarded as one of the major environmental concerns in recent decades in many urban environments. Although in urban areas lichens are exposed to both salt and nitrogen stress, no studies have been conducted to date on the simultaneous impact and interaction of these factors on lichen physiology. The aim was to determine the effect of various combinations of NaCl and NH4NO3 doses on the physiology of epigeic lichen Cladonia rei. We also aimed to compare the response of lichens collected from polluted and unpolluted sites to verify whether lichens exposed to different levels of environmental stress in their native environment will react differently. The combined salt-nitrogen treatment caused significant disturbances in the integrity of cell membranes and chlorophyll fluorescence parameters. The most detrimental effect concerned the loss of cell membrane integrity, which suggests that this parameter can serve as a relevant indicator of acute salt-nitrogen stress incidents. Salt stress decreased the photosynthetic efficiency 1 h after exposure, but after 72 h, the FV/FM returned to the level characteristic of healthy lichens in experimental groups without and with small doses of ammonium nitrate. In contrast, recovery was not possible in combination with high nitrogen doses. This indicates that exposure to short-term salt stress in a nitrogen-poor environment only causes a temporary reduction in photosynthetic efficiency, but in urban eutrophic environments may have more serious consequences. The weakened physiological condition of the mycobiont manifested by an increased level of cell membrane damage and a persistent decrease in the photosynthetic efficiency of the photobiont in lichens growing along the roads may indicate an excess of nitrogen in the environment, enhanced by the effect of salt. Lichens collected from a heavy-metal-polluted habitat responded more strongly than those from an unpolluted habitat suggesting that in lichens previously affected by certain harmful factors, exposure to another stress factor may lead to greater disturbances. This is of particular importance for lichens inhabiting the vicinity of roads, since they are also under the influence of other pollutants emitted by road traffic.


Assuntos
Poluentes Ambientais , Líquens , Metais Pesados , Nitrogênio/metabolismo , Metais Pesados/metabolismo , Fotossíntese , Poluentes Ambientais/metabolismo , Clorofila/metabolismo
10.
Sci Total Environ ; 860: 160550, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460115

RESUMO

In the glacier forelands, microbes play a fundamental role in soil development and shaping the vegetation structure. Such ecosystems represent various stages of soil development and are, therefore, an excellent place to study the interrelationship between soil, plants, and microorganisms. The aim of the study was to assess the effects of vegetation and soil physicochemical properties developing after glacier retreat on soil microbial communities. Specifically, abundance, species richness and the composition of arbuscular mycorrhizal fungi (AMF), as well as microbial biomass and community structure in soils were compared between plots established in 800-meter transects of three glacier forelands in northern Sweden. The cover of vascular plants and cryptogams, soil C content, AMF spore density and species richness, AMF biomass indicators, total microbial biomass, and bacterial phospholipid fatty acids (PLFA) were significantly and positively related to the distance from the glacier terminus. On the other hand, macronutrient concentrations and pH decreased along with increasing distance. No significant impact of the distance from the glacier terminus on the ratio fungal/bacterial PLFA was observed. Moreover, we found a significant effect of both glacier and the distance from the glacier terminus on the microbial community structure. AMF species richness and spore density in the glacier forelands were generally low, which is probably due to a limited supply of inoculum in primary successional ecosystems. Most microbial biochemical markers and AMF parameters were positively associated with the number of arbuscular mycorrhizal plant species and vascular plant and lichen cover as well as C content in soil, whereas negatively with soil macronutrients and pH. This could be related to an increase in plant cover and a decrease in soil nutrient levels as plant succession progresses. Our results showed that vegetation, soil C content, and microbial communities are interlinked and exhibit concordant patterns along successional gradients.


Assuntos
Microbiota , Micorrizas , Traqueófitas , Solo/química , Camada de Gelo/microbiologia , Biomassa , Microbiologia do Solo
11.
Plants (Basel) ; 11(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015394

RESUMO

Bryophytes are commonly used in biomonitoring heavy metal pollution, whereas the bioindicative value of bryophyte communities is a less known issue. The aim of the present study is to recognize the utility of the bryophyte community's structure in the assessment of soil condition in heavy metal-polluted, dry grasslands. The study plots are examined with respect to bryophytes; vascular plants; concentrations of Zn, Pb, Cd, and As in the soil; total nitrogen and organic carbon content in the soil; and soil pH. The results show that both bryophyte species richness and composition greatly depend on soil chemical characteristics, including heavy-metal pollution levels and soil pH. Three groups of species are distinguished: (1) species sensitive to pollution growing on acidic soils, (2) nonspecific species inhabiting a wide spectrum of heavy metal-polluted sites, and (3) species preferring polluted and alkaline soils. Our study reveals a gradual replacement of the bryophyte species alongside increasing soil pollution and alkalinity. This proves that bryophytes are highly responsive to soil factors and the changes in bryophyte composition may indicate the soil condition of a certain site. Furthermore, high concentrations of heavy metals in the soil and an alkaline pH positively affect bryophyte species richness. Consequently, such sites could be considered as biodiversity hotspots for terrestrial bryophytes in post-industrial landscapes.

12.
Chemosphere ; 308(Pt 2): 136365, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087724

RESUMO

Heavy metals present in the environment can cause a variety of injury symptoms in various organisms including lichens. Most studies examined metal-induced stress under controlled laboratory conditions, and little is known about actual response of lichens in their natural habitat. This study aims to recognize the effect of heavy metal accumulation (total and intracellular) on lichen physiological and biochemical parameters specifically related to the functioning of fungal component. Cladonia rei was used as a model species due to its common occurrence both in unpolluted and extremely polluted sites. We observed a decline in the fungal metabolism which was expressed by a decrease in ergosterol content and an increase in cell membrane damage as a result of increased Zn, Cd, Cu and Ni accumulation. Additionally, the results indicated that increased accumulation of xenobiotics (Pb and As) caused reduction of glutathione (GSH) concentrations and increased membrane lipid peroxidation. Therefore, we conclude that GSH does not provide high oxidative stress protection in C. rei which is somewhat against its insensitivity to pollution. The reduced pool of GSH could be explained by its oxidation to glutathione disulphide induced by heavy metal stress or its use for phytochelatin (PC) synthesis. The content of secondary metabolites was not related to heavy metal accumulation and remained at a relatively stable level. This indicates that the decline in the physiological condition did not weaken the mycobiont of C. rei enough to inhibit the synthesis of secondary metabolites and their precursors were supplied at a sufficient level. Thus, the potential function of main secondary metabolites as extracellular metal immobilizers and antioxidants is still possible even in individuals growing at extremely polluted sites. Despite the evident heavy metal stress, C. rei copes well and spreads easily through extremely polluted environments, which underlines its unique pioneering abilities in highly disturbed sites.


Assuntos
Líquens , Metais Pesados , Ascomicetos , Cádmio/metabolismo , Ergosterol , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Chumbo/metabolismo , Líquens/metabolismo , Metais Pesados/química , Fitoquelatinas/metabolismo
13.
Sci Total Environ ; 810: 151313, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756898

RESUMO

Although herbaceous plant layer may contribute significantly to plant diversity and nutrient turnover, its effects on the soil environment in forest ecosystems remain largely unexplored. In this study, we compared the effects of mono-dominant and multi-species assemblages of herb plants on soil physicochemical and microbial properties in two temperate deciduous (beech and riparian) forests. We hypothesized that the presence of herbaceous plants would increase microbial activity and biomass, and nutrient availability in soil when compared to bare soil. This increase would be the highest in multi-species assemblages as high plant diversity supports microbial performance and soil processes, and the expected patterns would be essentially similar in both forests. Allium ursinum L. and Dentaria enneaphyllos L. represented herb species forming mono-dominant patches in beech forest, while Aegopodium podagraria L. and Ficaria verna Huds. represented herb species forming mono-dominant patches in riparian forest. Our hypotheses were only partly supported by the data. We found that herb plant species affected soil microbial communities and processes, particularly in the riparian forest, but they generally did not influence soil physicochemical properties. In the beech forest, herbaceous plants increased saprotrophic fungi biomass, fungi/bacteria ratio, and arylsulfatase activity, with the highest values under D. enneaphyllos. In the riparian forest, a number of microbial parameters, namely bacteria, G+ bacteria, and saprotrophic fungi biomass, fungi/bacteria ratio, and soil respiration exhibited the lowest values in bare soil and the highest values in soil under A. podagraria. Contrary to expectations, soils under multi-species assemblages were characterized by intermediate values of microbial parameters. Concluding, herbaceous plant species largely supported soil microbial communities in deciduous temperate forests but did not affect soil chemical properties. The potential reasons for the positive influence of herb plants on soil microbes (litterfall, rhizodeposition) require further investigation.


Assuntos
Microbiota , Solo , Florestas , Fungos , Plantas , Microbiologia do Solo
14.
Fungal Biol ; 125(12): 999-1008, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34776237

RESUMO

The synthesis of various unique secondary metabolites by lichens is the result of mutualistic symbiotic association between the mycobiont and autotrophic photobiont. The function of these compounds and causal factors for their production are not fully understood. This paper examines the effect of heavy-metal bioaccumulation and physiological parameters related to photosynthesis and carbon metabolism on the production of lichen substances in hyperaccumulator Diploschistes muscorum. The obtained model of secondary metabolite concentrations in the thalli demonstrates that the carbon source provided by the photobiont and associated polyols produced by the mycobiont have positive impact on the production; on the contrary, the increased intracellular load of heavy metals and excessive loss of cell membrane integrity adversely affected secondary metabolite contents. Additionally, the production of secondary metabolites appears to be more dependent on intracellular metal concentrations than on soil pollution level. To compensate for metal stress, both efficient functioning of algal component and sufficient production of secondary metabolites are required. The balanced physiological functioning of mycobiont and photobiont constitutes the complex protective mechanism to alleviate the harmful effects of heavy metal stress on primary and secondary metabolism of lichens.


Assuntos
Líquens , Metais Pesados , Ascomicetos , Metais Pesados/toxicidade , Álcoois Açúcares , Simbiose
15.
PLoS One ; 16(10): e0258862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699539

RESUMO

While numerous studies have revealed that arbuscular mycorrhizal fungi (AMF) enhance plant performance, the influence of these symbionts on temperate-forest herbaceous species in relation to soil physical and chemical properties has been left largely unexplored. Therefore, two perennial herbs, Geum urbanum (Rosaceae) and Senecio ovatus (Asteraceae), were examined in a laboratory pot experiment to determine whether AMF influenced their growth, photosynthetic performance index, and N and P contents in biomass. The treatments, involving three widespread AMF species, were prepared in the soils of two habitats colonised by both plants, namely beech and riparian forests, as follows: (1) control-soils without AMF, (2) Claroideoglomus claroideum, (3) Funneliformis geosporus, and (4) Funneliformis mosseae. Neither shoot mass nor photosynthetic performance index of G. urbanum and S. ovatus was enhanced by AMF. Senecio ovatus root mass was increased compared to control only by F. geosporus. Inconsistent effects were observed in N and P contents in shoots and roots of both species. The direction and magnitude of these responses were dependent on the fungal species and soil type. Although the plant species belong to families whose representatives are usually regularly colonised by and highly responsive to AMF, our study indicates that AMF had only a slight impact on the performance of G. urbanum and S. ovatus at the early stages of their development. The plants being slightly dependent on AMF are thus adapted to colonise temperate-forest soils with a low level of availability of AMF propagules.


Assuntos
Florestas , Geum/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Senécio/microbiologia , Solo , Microbiologia do Solo
16.
Sci Total Environ ; 750: 141439, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882488

RESUMO

Certain lichens are effective colonisers of polluted sites. However, little is known about the tolerance of photobionts and the degree of mycobiont selectivity to photobionts relative to metal pollution. The present study recognises the genetic and anatomical diversity of Asterochloris photobionts in epigeic lichens, i.e. Cladonia cariosa, C. rei, and Diploschistes muscorum, in relation to a wide spectrum of soil pollution. In accordance with phylogenetic analysis, photobionts were clustered in 7 moderately- to well-supported clades, including 19 haplotypes. The mycobionts of all studied lichens demonstrated a low level of selectivity and were capable of associating with various Asterochloris lineages. This tendency was also expressed by the frequent (~25%) occurrence of multiple algal genotypes in a single thallus. This indicates that identified Asterochloris lineages are generally tolerant to heavy-metal pollution, and the low level of selectivity of mycobionts enables them to select the most suitable and/or available partner. The trend of increasing incidence of certain Asterochloris lineages and decreasing frequency of others along with increasing soil pollution was observed. This proves the superior adaptation of some photobionts to polluted sites. Such symbiotic plasticity constitute an adaptive feature necessary for the successful colonisation. High number of haplotypes at polluted sites could be the result of multiple introduction events from different areas during the initial stages of spontaneous succession. Regardless of the genetic pattern, Asterochloris cells were considerably smaller, and the density and compaction of cells in the algal layer were higher, in lichen specimens from polluted sites, indicating that photobiont characteristics may be closely dependent on heavy-metal pollution.


Assuntos
Líquens , Metais Pesados , Ecossistema , Poluição Ambiental , Filogenia , Simbiose
17.
Mycologia ; 113(1): 43-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33146594

RESUMO

Mycobionts of many lichen genera appear to demonstrate strong selectivity in the choice of algal partner. The biological properties of a photobiont and its availability in an environment significantly determine the habitat requirements of lichens. Flexibility in photobiont choice extends the ecological amplitude of lichens; therefore, it may constitute an important adaptive strategy for colonization of extreme habitats. The photobiont inventory of the three epigeic lichens most resistant to soil pollution, i.e., Cladonia cariosa, C. rei, and the hyperaccumulator Diploschistes muscorum, was examined to verify whether and to what extent algal composition depends on the type of habitat and substrate enrichment with heavy metals. Photobionts Asterochloris and Trebouxia were identified in the studied lichen species; however, the presence of Trebouxia was directly related to anthropogenic sites with technogenic substrates, and the proportion of lichen specimens with these algae clearly depended on the level of heavy-metal soil pollution and the habitat type. The total number of algal haplotypes increased with increasing soil pollution, and the richness was associated more with soil pollution than with a given lichen species. Additionally, a large number of lichen individuals bearing multiple algal genotypes at polluted sites were recorded. Although Cladonia lichens were previously thought to be restricted to Asterochloris, they are able to start the relichenization process with Trebouxia under specific habitat conditions and to establish a stable association with these algae when colonization of disturbed sites takes place. Comparative analysis of the internal transcribed spacer (ITS) rDNA sequences revealed as many as 13 haplotypes of Trebouxia, and phylogenetic analysis grouped them into two different clades. Such a high level of genetic diversity indicates that Trebouxia is well adapted to metal pollution and could be an alternative photosynthetic partner for certain lichens, especially in polluted sites.


Assuntos
Clorófitas , Líquens , Metais Pesados/metabolismo , Ascomicetos/fisiologia , Clorófitas/classificação , Clorófitas/genética , Clorófitas/metabolismo , DNA de Algas , DNA Espaçador Ribossômico , Poluição Ambiental , Genótipo , Líquens/fisiologia , Filogenia , Poluentes do Solo/metabolismo , Simbiose
18.
Sci Total Environ ; 770: 144793, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33497901

RESUMO

Vascular and nonvascular plants are affected by environmental factors determining their distribution and shaping their diversity and cover. Despite the cryptogam commonness in Arctic communities, previous studies have often focused on limited number of factors and their impact on only selected species of vascular plants or cryptogams. Our study aimed to investigate in detail the differences in species diversity and cover of cryptogams and vascular plants in the glacier forelands and mature tundra on Svalbard. Furthermore, we determined the biotic and abiotic factors that affected diversity, cover and distribution of cryptogam and vascular plant species. In 2017, we established 201 plots in eight locations (each including habitat type of foreland and mature tundra) and surveyed species abundance, sampled soils and environmental data. Results revealed that diversity and cover of analysed groups differed significantly between locations and habitat types, except for cryptogam cover in mature tundra in terms of location. Distance to the glacier terminus, slope, soil conductivity, nutrient content, and clay content impacted both plant groups' diversity. In contrast, distance to the glacier terminus, nutrient content and soil pH affected their cover. In addition, for cryptogam diversity and cover, foreland location and vascular plant cover were also important, while for vascular plant cover time elapsed after glacier retreat was significant. Distribution of both groups' species in forelands was associated with time elapsed after glacier retreat, soil pH, and nutrient contents. Soil texture and distance to the glacier terminus additionally influenced cryptogam distribution. The positive impact of vascular plants on cryptogam diversity and cover indicates complex relationships between these groups, even in forelands' relatively simple communities. As the cryptogam diversity in the polar areas is high but still largely unknown, future studies on species ecology and climate change impact on vegetation should consider both vascular plants and cryptogams and interactions between these groups.


Assuntos
Camada de Gelo , Solo , Regiões Árticas , Ecossistema , Svalbard
19.
J Trace Elem Med Biol ; 61: 126512, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32299012

RESUMO

BACKGROUND: Heavy metals that pass through the plasmalemma are expected to influence on lichen metabolic processes; however, lichens may tolerate high concentrations of metals by sequestrating them extracellularly. Heavy metal accumulation level fundamentally determine the success of lichens in the colonisation of polluted sites; however, the proportions between extra- and intracellular metal concentrations in lichen thalli are still poorly recognized. In this study metal accumulation patterns of selected toxic trace elements, i.e. Pb, Cd, and micronutrients, i.e. Zn, Cu and Ni, in Cladonia cariosa thalli were recognised in relation to extra- and intracellular fractions. METHODS: The intracellular and total concentrations of Zn, Pb, Cd, Cu and Ni in lichen thalli collected from eleven variously polluted sites were determined by means of atomic absorption spectrometry. Additionally, organic carbon and total nitrogen contents as well as pH of soil substrate were measured. RESULTS: The accumulation patterns differed between studied metal elements; the major part of Zn, Pb and Cd loads was accumulated extracellularly, whereas Cu and Ni accumulation was mostly intracellular. Like toxic trace elements, Zn was accumulated mainly extracellularly at high polluted sites. The non-linear models most reliably reflect relationships between intracellular and extracellular metal contents in C. cariosa thalli. The intracellular contents of Zn, Pb, Cd and Cu increased slower at higher than at lower extracellular concentrations. Moreover, at higher total concentrations of elements in the thalli, their extracellular proportions were markedly increased. CONCLUSION: The results suggest that in the face of extreme Zn-enrichment, lichens demonstrate the ability to accumulate the excess of Zn outside the cells. Therefore, it can be concluded that metal accumulation depend not only on the element but also on its abundance in the environment and direct availability for lichens. The studied species showed a defence against excessive intracellular accumulation when a given element is in excess. Such capability may facilitate the colonization of extremely polluted sites by certain pioneer lichens.

20.
Animals (Basel) ; 10(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344783

RESUMO

Growing urbanization leads to an increased risk of parasite spread in densely inhabited areas. Free-ranging cats can be locally numerous and come into frequent contact with both wildlife and humans. Cats are thus expected to contribute to parasitic disease transmission. In our study, we investigated the prevalence of endoparasites in free ranging cats in urban areas of Kraków city, based on necropsy of road-killed cats in relation to sex and diet of cat, season and habitat type. We found that 62% of 81 cats were infected with endoparasites with Toxocara cati being the most prevalent. In total, we identified seven parasite species. The number of parasite species was higher in suburban habitats and aside from Eucoleus aerophilus the prevalence of all parasites was higher in cats from suburban areas than in the individuals living in the city urban core. The prey of examined cats included mostly rodents, followed by soricomorphs and birds, which can all serve as paratenic hosts. Based on our results, we suggest that cats in urban areas should be considered as a serious potential zoonotic threat. Implementation of proper veterinary control and wider education on the topic is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA