Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659146

RESUMO

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Assuntos
Genoma Bacteriano , Legionella/fisiologia , Legionelose/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Espaço Intracelular/microbiologia , Legionella/classificação , Filogenia , Domínios Proteicos
2.
Bioessays ; 39(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28026026

RESUMO

Pathogenic bacteria frequently target the endoplasmic reticulum (ER) and mitochondria in order to exploit host functions. ER-mitochondria inter-organelle communication is topologically sub-compartmentalized at mitochondria-associated ER membranes (MAMs). MAMs are specific membranous microdomains with unique regulatory functions such as lipid synthesis and trafficking, calcium homeostasis, mitochondrial morphology, inflammasome activation, autophagosome formation, and apoptosis. These important cellular processes are all modulated by pathogens to subvert host functions and promote infection, thus it is tempting to assume that pathogenic bacteria target MAMs to subvert these different pathways in their hosts. First lines of evidence that support this hypothesis come from Legionella pneumophila. This intracellular bacterium secretes an effector that exhibits sphingosine-1 phosphate lyase activity (LpSpl) that seems to target MAMs to modulate the autophagy response to infection. Here we thus propose the concept that MAMs could be targeted by pathogenic bacteria to undermine key host cellular processes.


Assuntos
Aldeído Liases/metabolismo , Retículo Endoplasmático/microbiologia , Legionella pneumophila/enzimologia , Microdomínios da Membrana/microbiologia , Mitocôndrias/microbiologia , Animais , Autofagia , Humanos , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Microdomínios da Membrana/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(7): 1901-6, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831115

RESUMO

Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.


Assuntos
Aldeído Liases/metabolismo , Autofagia , Legionella pneumophila/enzimologia , Esfingolipídeos/metabolismo , Aldeído Liases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Doença dos Legionários/imunologia , Camundongos , Conformação Proteica
4.
Cell Microbiol ; 17(8): 1098-107, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031999

RESUMO

The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are 'eukaryotic-like' proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best-studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co-evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Bactérias/metabolismo , Epigênese Genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Bacillus/fisiologia , Infecções Bacterianas/microbiologia , Chlamydia/fisiologia , Cromatina/metabolismo , Legionella/fisiologia , Metilação
5.
Environ Microbiol ; 16(2): 359-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23957615

RESUMO

Legionella pneumophila uses aquatic protozoa as replication niche and protection from harsh environments. Although L. pneumophila is not known to have a circadian clock, it encodes homologues of the KaiBC proteins of Cyanobacteria that regulate circadian gene expression. We show that L. pneumophila kaiB, kaiC and the downstream gene lpp1114, are transcribed as a unit under the control of the stress sigma factor RpoS. KaiC and KaiB of L. pneumophila do not interact as evidenced by yeast and bacterial two-hybrid analyses. Fusion of the C-terminal residues of cyanobacterial KaiB to Legionella KaiB restores their interaction. In contrast, KaiC of L. pneumophila conserved autophosphorylation activity, but KaiB does not trigger the dephosphorylation of KaiC like in Cyanobacteria. The crystal structure of L. pneumophila KaiB suggests that it is an oxidoreductase-like protein with a typical thioredoxin fold. Indeed, mutant analyses revealed that the kai operon-encoded proteins increase fitness of L. pneumophila in competitive environments, and confer higher resistance to oxidative and sodium stress. The phylogenetic analysis indicates that L. pneumophila KaiBC resemble Synechosystis KaiC2B2 and not circadian KaiB1C1. Thus, the L. pneumophila Kai proteins do not encode a circadian clock, but enhance stress resistance and adaption to changes in the environments.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Legionella pneumophila/genética , Óperon , Estresse Fisiológico , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Legionella pneumophila/fisiologia , Fosforilação , Filogenia , Estrutura Terciária de Proteína , RNA Bacteriano/genética
6.
Curr Top Microbiol Immunol ; 376: 1-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23949285

RESUMO

Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.


Assuntos
Amoeba/microbiologia , Doença dos Legionários/imunologia , Macrófagos/microbiologia , Endocitose , Humanos , Legionella pneumophila/patogenicidade , Macrófagos/imunologia , Fagocitose , Vacúolos/microbiologia
7.
Traffic ; 12(5): 579-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21291504

RESUMO

Rho GTPases, which are master regulators of both the actin cytoskeleton and membrane trafficking, are often hijacked by pathogens to enable their invasion of host cells. Here we report that the cytotoxic necrotizing factor-1 (CNF1) toxin of uropathogenic Escherichia coli (UPEC) promotes Rac1-dependent entry of bacteria into host cells. Our screen for proteins involved in Rac1-dependent UPEC entry identifies the Toll-interacting protein (Tollip) as a new interacting protein of Rac1 and its ubiquitinated forms. We show that knockdown of Tollip reduces CNF1-induced Rac1-dependent UPEC entry. Tollip depletion also reduces the Rac1-dependent entry of Listeria monocytogenes expressing InlB invasion protein. Moreover, knockdown of Tollip, Tom1 and clathrin, decreases CNF1 and Rac1-dependent internalization of UPEC. Finally, we show that Tollip, Tom1 and clathrin associate with Rac1 and localize at the site of bacterial entry. Collectively, these findings reveal a new link between Rac1 and Tollip, Tom1 and clathrin membrane trafficking components hijacked by pathogenic bacteria to allow their efficient invasion of host cells.


Assuntos
Infecções Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Endocitose/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas/metabolismo , Escherichia coli Uropatogênica/citologia , Proteínas rac1 de Ligação ao GTP/genética
8.
Nat Commun ; 14(1): 2154, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059817

RESUMO

Legionella pneumophila replicates intracellularly by secreting effectors via a type IV secretion system. One of these effectors is a eukaryotic methyltransferase (RomA) that methylates K14 of histone H3 (H3K14me3) to counteract host immune responses. However, it is not known how L. pneumophila infection catalyses H3K14 methylation as this residue is usually acetylated. Here we show that L. pneumophila secretes a eukaryotic-like histone deacetylase (LphD) that specifically targets H3K14ac and works in synergy with RomA. Both effectors target host chromatin and bind the HBO1 histone acetyltransferase complex that acetylates H3K14. Full activity of RomA is dependent on the presence of LphD as H3K14 methylation levels are significantly decreased in a ∆lphD mutant. The dependency of these two chromatin-modifying effectors on each other is further substantiated by mutational and virulence assays revealing that the presence of only one of these two effectors impairs intracellular replication, while a double knockout (∆lphD∆romA) can restore intracellular replication. Uniquely, we present evidence for "para-effectors", an effector pair, that actively and coordinately modify host histones to hijack the host response. The identification of epigenetic marks modulated by pathogens has the potential to lead to the development of innovative therapeutic strategies to counteract bacterial infection and strengthening host defences.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Legionella/metabolismo , Cromatina/metabolismo , Proteínas de Bactérias/metabolismo , Doença dos Legionários/genética , Histonas/metabolismo
9.
mBio ; 14(5): e0165523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37795993

RESUMO

IMPORTANCE: Legionella pneumophila is an intracellular bacterium responsible of Legionnaires' disease, a severe pneumonia that is often fatal when not treated promptly. The pathogen's ability to efficiently colonize the host resides in its ability to replicate intracellularly. Essential for intracellular replication is translocation of many different protein effectors via a specialized secretion system. One of them, called RomA, binds and directly modifies the host chromatin at a unique site (tri-methylation of lysine 14 of histone H3 [H3K14me]). However, the molecular mechanisms of binding are not known. Here, we resolve this question through structural characterization of RomA together with the H3 peptide. We specifically reveal an active role of the ankyrin repeats located in its C-terminal in the interaction with the histone H3 tail. Indeed, without the ankyrin domains, RomA loses its ability to act as histone methyltransferase. These results discover the molecular mechanisms by which a bacterial histone methyltransferase that is conserved in L. pneumophila strains acts to modify chromatin.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Anquirinas/metabolismo , Histona Metiltransferases/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/metabolismo
10.
Nat Commun ; 14(1): 102, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609656

RESUMO

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection. By sequestering SENP3, the effectors promote cytoplasmic accumulation of nucleolar AAA-ATPase NVL and ribosomal protein L5 (RPL5) in effector-enriched structures in the vicinity of replicating bacteria. The shuttling of ribosomal biogenesis-associated nucleolar proteins is inhibited by SENP3 and requires the autophagy-initiation protein Beclin1 and the SUMO-E3 ligase PIAS3. Our results highlight a nucleomodulatory function of two Brucella effectors and reveal that SENP3 is a crucial regulator of the subcellular localisation of nucleolar proteins during Brucella infection, promoting intracellular replication of the pathogen.


Assuntos
Brucelose , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Brucella abortus/metabolismo , Nucléolo Celular/metabolismo , Brucelose/microbiologia , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
11.
Microlife ; 3: uqac014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223361

RESUMO

Methyltransferase (MTases) enzymes transfer methyl groups particularly on proteins and nucleotides, thereby participating in controlling the epigenetic information in both prokaryotes and eukaryotes. The concept of epigenetic regulation by DNA methylation has been extensively described for eukaryotes. However, recent studies have extended this concept to bacteria showing that DNA methylation can also exert epigenetic control on bacterial phenotypes. Indeed, the addition of epigenetic information to nucleotide sequences confers adaptive traits including virulence-related characteristics to bacterial cells. In eukaryotes, an additional layer of epigenetic regulation is obtained by post-translational modifications of histone proteins. Interestingly, in the last decades it was shown that bacterial MTases, besides playing an important role in epigenetic regulations at the microbe level by exerting an epigenetic control on their own gene expression, are also important players in host-microbe interactions. Indeed, secreted nucleomodulins, bacterial effectors that target the nucleus of infected cells, have been shown to directly modify the epigenetic landscape of the host. A subclass of nucleomodulins encodes MTase activities, targeting both host DNA and histone proteins, leading to important transcriptional changes in the host cell. In this review, we will focus on lysine and arginine MTases of bacteria and their hosts. The identification and characterization of these enzymes will help to fight bacterial pathogens as they may emerge as promising targets for the development of novel epigenetic inhibitors in both bacteria and the host cells they infect.

12.
J Cell Biol ; 173(5): 809-19, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16754962

RESUMO

The GTPase RhoA is a major regulator of the assembly of actin stress fibers and the contractility of the actomyosin cytoskeleton. The epidermal cell differentiation inhibitor (EDIN) and EDIN-like ADP-ribosyltransferases of Staphylococcus aureus catalyze the inactivation of RhoA, producing actin cable disruption. We report that purified recombinant EDIN and EDIN-producing S. aureus provoke large transcellular tunnels in endothelial cells that we have named macroapertures (MAs). These structures open transiently, followed by the appearance of actin-containing membrane waves extending over the aperture. Disruption of actin cables, either directly or indirectly, through rhoA RNAi knockdown also triggers the formation of MAs. Intoxication of endothelial monolayers by EDIN produces a loss of barrier function and provides direct access of the endothelium basement membrane to S. aureus.


Assuntos
ADP Ribose Transferases/farmacologia , Proteínas de Bactérias/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , ADP Ribose Transferases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Interferência de RNA/fisiologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/química , Staphylococcus aureus/enzimologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Cell Microbiol ; 12(7): 891-905, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20088950

RESUMO

We have investigated how Bacillus anthracis lethal toxin (LT) triggers caspase-3 activation and the formation of thick actin cables in human endothelial cells. By DNA array analysis we show that LT has a major impact on the cell transcriptome and we identify key host genes involved in LT cytotoxic effects. Indeed, upregulation of TRAIL and downregulation of XIAP both participate in LT-induced caspase-3 activation. LT induces a downregulation of the immediate early gene and master regulator of transcription egr1. Importantly, its re-expression in LT-intoxicated cells blocks caspase-3 activation. In parallel, we found that the formation of actin cables induced by LT occurs in the absence of direct activation of RhoA/ROCK signalling. We show that knock-down of cortactin and rhophilin-2 under conditions of calponin-1 expression defines the minimal set of genes regulated by LT for actin cable formation. Together our data establish that the modulation of the cell transcriptome by LT plays a key role in triggering human endothelial cell toxicity.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular , Células Endoteliais/citologia , Regulação da Expressão Gênica/genética , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
14.
Front Cell Dev Biol ; 9: 647045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614668

RESUMO

[This corrects the article DOI: 10.3389/fcell.2019.00168.].

15.
Microlife ; 2: uqab013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37223249

RESUMO

In recent years, the interplay of epigenetics and infection moved into the limelight. Epigenetic regulation describes modifications in gene expression without alterations of the DNA sequence. In eukaryotes, this mechanism is central for fundamental cellular processes such as cell development and differentiation, but it is also involved in more specific tasks such as the response to infection by a pathogen. One of the most common types of epigenetic changes is the modification of histones. Histones, the small protein building blocks that are wrapped with DNA are the fundamental packaging unit of chromatin. Histones can be modified by linking different moieties to them-one of the most abundant ones is acetylation. Histone acetylation is regulated by two main classes of enzymes, histone acetyl transferases (HAT) and their counterparts, histone deacetylases (HDAC). Given the high abundance and importance in regulating gene expression, histone acetylation is an excellent target for pathogens to manipulate the host cell to their advantage. Targeting HDACs gained particular interest in recent years, due to the increased use of HDAC inhibitors in clinical practice. Recently, the possibility to fight an infection with HDAC inhibitors was suggested as an alternative to overcome the ever-growing problem of antibiotic resistance. In this review, we focus on the regulation of HDACs and their involvement in immune cell function. We then highlight different mechanisms employed by pathogens to manipulate histone deacetylases and we discuss the possibility of HDAC inhibitors as therapeutics to fight infections.

16.
Annu Rev Pathol ; 15: 439-466, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31657966

RESUMO

Legionella species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires' disease. Since the identification of Legionella pneumophila in 1977, four decades of research on Legionella biology and Legionnaires' disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, Legionella species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of Legionella infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.


Assuntos
Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Amoeba/genética , Amoeba/imunologia , Amoeba/patogenicidade , Células Eucarióticas/imunologia , Células Eucarióticas/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Legionella/classificação , Legionella/genética , Legionella/imunologia , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Doença dos Legionários/patologia
17.
Infect Immun ; 77(9): 3596-601, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546197

RESUMO

Systemic injection of Bacillus anthracis lethal toxin (LT) produces vascular leakage and animal death. Recent studies suggest that LT triggers direct endothelial cell cytotoxicity that is responsible for the vascular leakage. LT is composed of heptamers of protective antigen (PA), which drives the endocytosis and translocation into host cells of the lethal factor (LF), a mitogen-activated protein kinase kinase protease. Here we investigated the consequences of injection of an endothelium-permeabilizing factor using LT as a "molecular syringe." To this end, we generated the chimeric factor LE, corresponding to the PA-binding domain of LF (LF(1-254)) fused to EDIN exoenzyme. EDIN ADP ribosylates RhoA, leading to actin cable disruption and formation of transcellular tunnels in endothelial cells. We report that systemic injection of LET (LE plus PA) triggers a PA-dependent increase in the pulmonary endothelium permeability. We also report that native LT induces a progressive loss of endothelium barrier function. We established that there is a direct correlation between the extent of endothelium permeability induced by LT and the cytotoxic activity of LT. This suggests new ways to design therapeutic drugs against anthrax directed toward vascular permeability.


Assuntos
Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Permeabilidade Capilar , Animais , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/toxicidade , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
18.
Front Cell Dev Biol ; 7: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497599

RESUMO

Bacterial pathogens have developed many different strategies to hijack host cell responses to promote their own survival. The manipulation of lipid biogenesis and cell membrane stability is emerging as a key player in bacterial host cell control. Indeed, many bacterial pathogens such as Legionella, Pseudomonas, Neisseria, Staphylococci, Mycobacteria, Helicobacter, or Clostridia are able to manipulate and use host sphingolipids during multiple steps of the infectious process. Sphingolipids have long been considered only as structural components of cell membranes, however, it is now well known that they are also intracellular and intercellular signaling molecules that play important roles in many eukaryotic cell functions as well as in orchestrating immune responses. Furthermore, they are important to eliminate invading pathogens and play a crucial role in infectious diseases. In this review, we focus on the different strategies employed by pathogenic bacteria to hijack the sphingolipid balance in the host cell to promote cellular colonization.

19.
Methods Mol Biol ; 1921: 179-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694492

RESUMO

The ability of Legionella pneumophila to colonize host cells and to form a replicative vacuole depends on its ability to counteract the host cell response by secreting more than 300 effectors. The host cell responds to this bacterial invasion with extensive intracellular signaling to counteract the replication of the pathogen. When studying L. pneumophila infection in vitro, only a small proportion of the cell lines or primary cells used to analyze the host response are infected; the study of such a mixed cell population leads to unprecise results. In order to study the multitude of pathogen-induced phenotypic changes occurring in the host cell, the separation of infected from uninfected cells is a top priority. Here we describe a highly efficient FACS-derived protocol to separate cells infected with a L. pneumophila strain encoding a fluorescent protein. Indeed, the highly infected, homogenous cell population obtained after sorting is the best possible starting point for the studies of infection-induced effects.


Assuntos
Citometria de Fluxo , Legionella pneumophila/fisiologia , Doença dos Legionários/microbiologia , Fagócitos/microbiologia , Fagocitose , Linhagem Celular , Citometria de Fluxo/métodos , Expressão Gênica , Genes Reporter , Interações Hospedeiro-Patógeno , Humanos , Doença dos Legionários/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fagócitos/imunologia , Fagocitose/imunologia
20.
Nat Commun ; 10(1): 1142, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850593

RESUMO

FIC proteins regulate molecular processes from bacteria to humans by catalyzing post-translational modifications (PTM), the most frequent being the addition of AMP or AMPylation. In many AMPylating FIC proteins, a structurally conserved glutamate represses AMPylation and, in mammalian FICD, also supports deAMPylation of BiP/GRP78, a key chaperone of the unfolded protein response. Currently, a direct signal regulating these FIC proteins has not been identified. Here, we use X-ray crystallography and in vitro PTM assays to address this question. We discover that Enterococcus faecalis FIC (EfFIC) catalyzes both AMPylation and deAMPylation and that the glutamate implements a multi-position metal switch whereby Mg2+ and Ca2+ control AMPylation and deAMPylation differentially without a conformational change. Remarkably, Ca2+ concentration also tunes deAMPylation of BiP by human FICD. Our results suggest that the conserved glutamate is a signature of AMPylation/deAMPylation FIC bifunctionality and identify metal ions as diffusible signals that regulate such FIC proteins directly.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Cálcio/metabolismo , Quimiocina CCL7/química , Proteínas de Choque Térmico/química , Processamento de Proteína Pós-Traducional , Monofosfato de Adenosina/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cálcio/química , Cátions Bivalentes , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Magnésio/química , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA