Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(9): 2588-2600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919374

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has shown to be a powerful platform to produce complex biopharmaceutical products, such as recombinant proteins and virus-like particles. More recently, IC-BEVS has also been used as an alternative to produce recombinant adeno-associated virus (rAAV). However, little is known about the variability of insect cell populations and the potential effect of heterogeneity (e.g., stochastic infection process and differences in infection kinetics) on product titer and/or quality. In this study, transcriptomics analysis of Sf9 insect cells during the production of rAAV of serotype 2 (rAAV2) using a low multiplicity of infection, dual-baculovirus system was performed via single-cell RNA-sequencing (scRNA-seq). Before infection, the principal source of variability in Sf9 insect cells was associated with the cell cycle. Over the course of infection, an increase in transcriptional heterogeneity was detected, which was linked to the expression of baculovirus genes as well as to differences in rAAV transgenes (rep, cap and gfp) expression. Noteworthy, at 24 h post-infection, only 29.4% of cells enclosed all three necessary rAAV transgenes to produce packed rAAV2 particles, indicating limitations of the dual-baculovirus system. In addition, the trajectory analysis herein performed highlighted that biological processes such as protein folding, metabolic processes, translation, and stress response have been significantly altered upon infection. Overall, this work reports the first application of scRNA-seq to the IC-BEVS and highlights significant variations in individual cells within the population, providing insight into the rational cell and process engineering toward improved rAAV2 production in IC-BEVS.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Transcriptoma/genética , Análise da Expressão Gênica de Célula Única , Células Sf9 , Baculoviridae/genética , Baculoviridae/metabolismo , Insetos
2.
Biotechnol Bioeng ; 120(9): 2578-2587, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37027346

RESUMO

The majority of recombinant adeno-associated viruses (rAAV) approved for clinical use or in clinical trials areproduced by transient transfection using the HEK293 cell line. However, this platform has several manufacturing bottlenecks at commercial scales namely, low product quality (full to empty capsid ratio <20% in most rAAV serotypes), lower productivities obtained after scale-up and the high cost of raw materials, in particular of Good Manufacturing Practice grade plasmid DNA required for transfection. The HeLa-based stable cell line rAAV production system provides a robust and scalable alternative to transient transfection systems. Nevertheless, the time required to generate the producer cell lines combined with the complexity of rAAV production and purification processes still pose several barriers to the use of this platform as a suitable alternative to the HEK293 transient transfection. In this work we streamlined the cell line development and bioprocessing for the HeLaS3-based production of rAAV. By exploring this optimized approach, producer cell lines were generated in 3-4 months, and presented rAAV2 volumetric production (bulk) > 3 × 1011 vg/mL and full to empty capsids ratio (>70%) at 2 L bioreactor scale. Moreover, the established downstream process, based on ion exchange and affinity-based chromatography, efficiently eliminated process related impurities, including the Adenovirus 5 helper virus required for production with a log reduction value of 9. Overall, we developed a time-efficient and robust rAAV bioprocess using a stable producer cell line achieving purified rAAV2 yields > 1 × 1011 vg/mL. This optimized platform may address manufacturing challenges for rAAV based medicines.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Células HeLa , Transfecção
3.
Biotechnol Bioeng ; 118(7): 2536-2547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764532

RESUMO

Stable insect cell lines are emerging as an alternative to the insect cell-baculovirus expression vector system (IC-BEVS) for protein expression, benefiting from being a virus-free, nonlytic system. Still, the titers achieved are considerably lower. In this study, stable insect (Sf-9 and High Five) cells producing Gag virus-like particles (VLPs) were first adapted to grow under hypothermic culture conditions (22°C instead of standard 27°C), and then pseudotyped with a model membrane protein (influenza hemagglutinin [HA]) for expression of Gag-HA VLPs. Adaptation to lower temperature led to an increase in protein titers of up to 12-fold for p24 (as proxy for Gag-VLP) and sixfold for HA, with adapted Sf-9 cells outperforming High Five cells. Resulting Gag-HA VLPs producer Sf-9 cells were cultured to high cell densities, that is, 100 × 106 cell/ml, using perfusion (ATF® 2) in 1 L stirred-tank bioreactors. Specific p24 and HA production rates were similar to those of batch culture, enabling to increase volumetric titers by 7-8-fold without compromising the assembly of Gag-HA VLPs. Importantly, the antigen (HA) quantity in VLPs generated using stable adapted cells in perfusion was ≈5-fold higher than that from IC-BEVS, with the added benefit of being a baculovirus-free system. This study demonstrates the potential of combining stable expression in insect cells adapted to hypothermic culture conditions with perfusion for improving Gag-HA VLPs production.


Assuntos
Técnicas de Cultura de Células , Proteína do Núcleo p24 do HIV/biossíntese , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Animais , Proteína do Núcleo p24 do HIV/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Proteínas Recombinantes de Fusão/genética , Células Sf9 , Spodoptera
4.
Bioprocess Biosyst Eng ; 44(1): 209-215, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32816073

RESUMO

Bone Marrow Tyrosine kinase in the chromosome X (BMX) is a TEC family kinase associated with numerous pathological pathways in cancer cells. Covalent inhibition of BMX activity holds promise as a therapeutic approach against cancer. To screen for potent and selective covalent BMX inhibitors, large quantities of highly pure BMX are normally required which is challenging with the currently available production and purification processes. Here, we developed a scalable production process for the human recombinant BMX (hrBMX) using the insect cell-baculovirus expression vector system. Comparable expression levels were obtained in small-scale shake flasks (13 mL) and in stirred-tank bioreactors (STB, 5 L). A two-step chromatographic-based process was implemented, reducing purification times by 75% when compared to traditional processes, while maintaining hrBMX stability. The final production yield was 24 mg of purified hrBMX per litter of cell culture, with a purity of > 99%. Product quality was assessed and confirmed through a series of biochemical and biophysical assays, including circular dichroism and dynamic light scattering. Overall, the platform herein developed was capable of generating 100 mg purified hrBMX from 5 L STB in just 34 days, thus having the potential to assist in-vitro covalent ligand high-throughput screening for BMX activity inhibition.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Proteínas Tirosina Quinases/biossíntese , Animais , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes , Células Sf9 , Spodoptera
5.
Biotechnol Bioeng ; 116(4): 919-935, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597533

RESUMO

Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.


Assuntos
Bioengenharia/métodos , Vacinas de Partículas Semelhantes a Vírus , Animais , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Biologia Sintética/métodos , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
7.
Appl Microbiol Biotechnol ; 102(2): 655-666, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143881

RESUMO

Conformationally complex membrane proteins (MPs) are therapeutic targets in many diseases, but drug discovery has been slowed down by the lack of efficient production tools. Co-expression of MPs with matrix proteins from enveloped viruses is a promising approach to obtain correctly folded proteins at the surface of virus-like particles (VLPs), preserving their native lipidic environment. Here, we implemented a site-specific recombinase-mediated cassette exchange (RMCE) strategy to establish a reusable HIV-1 Gag-expressing insect cell line for fast production of target MPs on the surface of Gag-VLPs. The Sf9 cell line was initially tagged with a Gag-GFP-expressing cassette incorporating two flipase recognition target sites (FRTs), one within the fusion linker of Gag-GFP. The GFP cassette was afterwards replaced by a Cherry cassette via flipase (Flp) recombination. The fusion of Gag to fluorescent proteins enabled high-throughput screening of cells with higher Gag expression and Flp-mediated cassette exchange ability, while keeping the functionality of the VLP scaffold unaltered. The best cell clone was then Flp-recombinated to produce Gag-VLPs decorated with a human ß2-adrenergic receptor (ß2AR). Release of a fluorescently labeled ß2AR into the culture supernatant was confirmed by immunoblotting, and its co-localization with Gag-VLPs was visualized by confocal microscopy. Furthermore, the differential avidity of ß2AR-dsplaying Gag-VLPs versus "naked" Gag-VLPs to an anti-ß2AR antibody measured by ELISA corroborated the presence of ß2AR at the surface of the Gag-VLPs. In conclusion, this novel insect cell line represents a valuable platform for fast production of MPs in their native conformation, which can accelerate small-molecule and antibody drug discovery programs.


Assuntos
Marcação de Genes/métodos , HIV-1/genética , Proteínas de Membrana/biossíntese , Recombinases/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Animais , Meios de Cultura/química , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , HIV-1/química , Humanos , Microscopia Confocal , Receptores Adrenérgicos beta 2/genética , Recombinases/genética , Células Sf9 , Transfecção , Vírion/genética
8.
Methods Mol Biol ; 2829: 79-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951328

RESUMO

Adaptive laboratory evolution (ALE) is a powerful tool for enhancing the fitness of cell lines in specific applications, including recombinant protein production. Through adaptation to nonstandard culture conditions, cells can develop specific traits that make them high producers. Despite being widely used for microorganisms and, to lesser extent, for mammalian cells, ALE has been poorly leveraged for insect cells. Here, we describe a method for adapting insect High Five and Sf9 cells to nonstandard culture conditions via an ALE approach. Aiming to demonstrate the potential of ALE to improve productivity of insect cells, two case studies are demonstrated. In the first, we adapted insect High Five cells from their standard pH (6.2) to neutral pH (7.0); this adaptation allowed to improve production of influenza virus-like particles (VLPs) by threefold, using the transient baculovirus expression vector system. In the second, we adapted insect Sf9 cells from their standard culture temperature (27 °C) to hypothermic growth (22 °C); this adaptation allowed to improve production of influenza VLPs by sixfold, using stable cell lines. These examples demonstrate the potential of ALE for enhancing productivity within distinct insect cell hosts and expression systems by manipulating different culture conditions.


Assuntos
Proteínas Recombinantes , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linhagem Celular , Células Sf9 , Baculoviridae/genética , Técnicas de Cultura de Células/métodos , Insetos/genética , Insetos/citologia , Evolução Molecular Direcionada/métodos , Concentração de Íons de Hidrogênio , Temperatura
9.
PLoS Comput Biol ; 8(2): e1002367, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359487

RESUMO

Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins.


Assuntos
Biologia Computacional/métodos , Rotavirus/fisiologia , Animais , Capsídeo/química , Insetos , Cinética , Luz , Modelos Estatísticos , Modelos Teóricos , Espalhamento de Radiação , Temperatura , Termodinâmica , Proteínas Virais/biossíntese , Montagem de Vírus
10.
Front Bioeng Biotechnol ; 11: 1143255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949887

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has been widely used to produce recombinant protein at high titers, including complex virus-like particles (VPLs). However, cell-to-cell variability upon infection is yet one of the least understood phenomena in virology, and little is known about its impact on production of therapeutic proteins. This study aimed at dissecting insect cell population heterogeneity during production of influenza VLPs in IC-BEVS using single-cell RNA-seq (scRNA-seq). High Five cell population was shown to be heterogeneous even before infection, with cell cycle being one of the factors contributing for this variation. In addition, infected insect cells were clustered according to the timing and level of baculovirus genes expression, with each cluster reporting similar influenza VLPs transgenes (i.e., hemagglutinin and M1) transcript counts. Trajectory analysis enabled to track infection progression throughout pseudotime. Specific pathways such as translation machinery, protein folding, sorting and degradation, endocytosis and energy metabolism were identified as being those which vary the most during insect cell infection and production of Influenza VLPs. Overall, this study lays the ground for the application of scRNA-seq in IC-BEVS processes to isolate relevant biological mechanisms during recombinant protein expression towards its further optimization.

11.
Biotechnol J ; 18(2): e2200466, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401834

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as an alternative time- and cost-efficient production platform for recombinant Adeno-associated virus (AAV) for gene therapy. However, a better understanding of the underlying biological mechanisms of IC-BEVS is fundamental to further optimize this expression system toward increased product titer and quality. Here, gene expression of Sf9 insect cells producing recombinant AAV through a dual baculovirus expression system, with low multiplicity of infection (MOI), was profiled by RNA-seq. An 8-fold increase in reads mapping to either baculovirus or AAV transgene sequences was observed between 24 and 48 h post-infection (hpi), confirming a take-over of the host cell transcriptome by the baculovirus. A total of 336 and 4784 genes were identified as differentially expressed at 24 hpi (vs non-infected cells) and at 48 hpi (vs. infected cells at 24 hpi), respectively, including dronc, birc5/iap5, and prp1. Functional annotation found biological processes such as cell cycle, cell growth, protein folding, and cellular amino acid metabolic processes enriched along infection. This work uncovers transcriptional changes in Sf9 in response to baculovirus infection, which provide new insights into cell and/or metabolic engineering targets that can be leveraged for rational bioprocess engineering of IC-BEVS for AAV production.


Assuntos
Dependovirus , Insetos , Animais , Dependovirus/genética , Células Sf9 , Insetos/genética , Insetos/metabolismo , Baculoviridae/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Proteínas Recombinantes/genética
12.
Front Immunol ; 14: 1256094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691927

RESUMO

The first exposure to influenza is presumed to shape the B-cell antibody repertoire, leading to preferential enhancement of the initially formed responses during subsequent exposure to viral variants. Here, we investigated whether this principle remains applicable when there are large genetic and antigenic differences between primary and secondary influenza virus antigens. Because humans usually have a complex history of influenza virus exposure, we conducted this investigation in influenza-naive cynomolgus macaques. Two groups of six macaques were immunized four times with influenza virus-like particles (VLPs) displaying either one (monovalent) or five (pentavalent) different hemagglutinin (HA) antigens derived from seasonal H1N1 (H1N1) strains. Four weeks after the final immunization, animals were challenged with pandemic H1N1 (H1N1pdm09). Although immunization resulted in robust virus-neutralizing responses to all VLP-based vaccine strains, there were no cross-neutralization responses to H1N1pdm09, and all animals became infected. No reductions in viral load in the nose or throat were detected in either vaccine group. After infection, strong virus-neutralizing responses to H1N1pdm09 were induced. However, there were no increases in virus-neutralizing titers against four of the five H1N1 vaccine strains; and only a mild increase was observed in virus-neutralizing titer against the influenza A/Texas/36/91 vaccine strain. After H1N1pdm09 infection, both vaccine groups showed higher virus-neutralizing titers against two H1N1 strains of intermediate antigenic distance between the H1N1 vaccine strains and H1N1pdm09, compared with the naive control group. Furthermore, both vaccine groups had higher HA-stem antibodies early after infection than the control group. In conclusion, immunization with VLPs displaying HA from antigenically distinct H1N1 variants increased the breadth of the immune response during subsequent H1N1pdm09 challenge, although this phenomenon was limited to intermediate antigenic variants.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Estações do Ano , Anticorpos Neutralizantes , Macaca fascicularis
13.
Toxins (Basel) ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133177

RESUMO

Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/complicações , Antivenenos , Sítios de Ligação , Plasma
14.
FEMS Yeast Res ; 12(2): 228-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22188344

RESUMO

The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Biotecnologia , Microbiologia Industrial , Saccharomyces cerevisiae/genética
15.
Front Bioeng Biotechnol ; 10: 917746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845394

RESUMO

Protein production processes based on stable insect cell lines require intensification to be competitive with the insect cell-baculovirus expression vector system (IC-BEVS). High cell density (HCD) cultures operate continuously, capable of maintaining specific production rates for extended periods of time which may lead to significant improvements in production yields. However, setting up such processes is challenging (e.g., selection of cell retention device and optimization of dilution rate), often demanding the manipulation of large volumes of culture medium with associated high cost. In this study, we developed a process for continuous production of Gag virus-like particles (VLP) pseudotyped with a model membrane protein (influenza hemagglutinin, HA) at HCD using stable insect cells adapted to low culture temperature. The impact of the cell retention device (ATF vs. TFF) and cell-specific perfusion rate (CSPR) on cell growth and protein expression kinetics was evaluated. Continuous production of Gag-HA VLPs was possible using both retention devices and CSPR of 0.04 nL/cell.d; TFF induces higher cell lysis when compared to ATF at later stages of the process (kD = 0.009 vs. 0.005 h-1, for TFF and ATF, respectively). Reducing CSPR to 0.01-0.02 nL/cell.d using ATF had a negligible impact on specific production rates (rHA = 72-68 titer/109 cell.h and rp24 = 12-11 pg/106 cell.h in all CSPR) and on particle morphology (round-shaped structures displaying HA spikes on their surface) and size distribution profile (peaks at approximately 100 nm). Notably, at these CSPRs, the amount of p24 or HA formed per volume of culture medium consumed per unit of process time increases by up to 3-fold when compared to batch and perfusion operation modes. Overall, this work demonstrates the potential of manipulating CSPRs to intensify the continuous production of Gag-HA VLPs at HCD using stable insect cells to make them an attractive alternative platform to IC-BEVS.

16.
Viruses ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298794

RESUMO

Adaptive laboratory evolution has been used to improve production of influenza hemagglutinin (HA)-displaying virus-like particles (VLPs) in insect cells. However, little is known about the underlying biological mechanisms promoting higher HA-VLP expression in such adapted cell lines. In this article, we present a study of gene expression patterns associated with high-producer insect High Five cells adapted to neutral pH, in comparison to non-adapted cells, during expression of influenza HA-VLPs. RNA-seq shows a decrease in the amount of reads mapping to host cell genomes along infection, and an increase in those mapping to baculovirus and transgenes. A total of 1742 host cell genes were found differentially expressed between adapted and non-adapted cells throughout infection, 474 of those being either up- or down-regulated at both time points evaluated (12 and 24 h post-infection). Interestingly, while host cell genes were found up- and down-regulated in an approximately 1:1 ratio, all differentially expressed baculovirus genes were found to be down-regulated in infected adapted cells. Pathway analysis of differentially expressed genes revealed enrichment of ribosome biosynthesis and carbohydrate, amino acid, and lipid metabolism. In addition, oxidative phosphorylation and protein folding, sorting and degradation pathways were also found to be overrepresented. These findings contribute to our knowledge of biological mechanisms of insect cells during baculovirus-mediated transient expression and will assist the identification of potential engineering targets to increase recombinant protein production in the future.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Hemaglutininas/genética , Baculoviridae/genética , Insetos/genética , Proteínas Recombinantes/genética , Expressão Gênica , Aminoácidos/genética , Carboidratos , RNA
17.
Front Bioeng Biotechnol ; 10: 805176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252128

RESUMO

Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs' unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies - nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs' thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90-115 nm for NTA and 129-141 nm for TRPS), surface charges (average of -20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.

18.
Front Bioeng Biotechnol ; 10: 879078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669054

RESUMO

Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield PfCyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen. In this study, different insect cell lines, culture conditions (baculovirus infection strategy, supplementation schemes, culture temperature modulation), and purification strategies (affinity tags) were explored aiming to develop a scalable, high-yield, and high-quality PfCyRPA for inclusion in a virosome-based malaria vaccine candidate. Supplements with antioxidants improved PfCyRPA volumetric titers by 50% when added at the time of infection. In addition, from three different affinity tags (6x-His, 4x-His, and C-tag) evaluated, the 4x-His affinity tag was the one leading to the highest PfCyRPA purification recovery yields (61%) and production yield (26 mg/L vs. 21 mg/L and 13 mg/L for 6x-His and C-tag, respectively). Noteworthy, PfCyRPA expressed using High Five cells did not show differences in protein quality or stability when compared to its human HEK293 cell counterpart. When formulated in a lipid-based virosome nanoparticle, immunized rabbits developed functional anti-PfCyRPA antibodies that impeded the multiplication of P. falciparum in vitro. This work demonstrates the potential of using IC-BEVS as a qualified platform to produce functional recombinant PfCyRPA protein with the added benefit of being a non-human expression system with short bioprocessing times and high expression levels.

19.
Pharmaceutics ; 14(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456687

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) homotrimeric spike (S) protein is responsible for mediating host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, thus being a key viral antigen to target in a coronavirus disease 19 (COVID-19) vaccine. Despite the availability of COVID-19 vaccines, low vaccine coverage as well as unvaccinated and immune compromised subjects are contributing to the emergence of SARS-CoV-2 variants of concern. Therefore, continued development of novel and/or updated vaccines is essential for protecting against such new variants. In this study, we developed a scalable bioprocess using the insect cells-baculovirus expression vector system (IC-BEVS) to produce high-quality S protein, stabilized in its pre-fusion conformation, for inclusion in a virosome-based COVID-19 vaccine candidate. By exploring different bioprocess engineering strategies (i.e., signal peptides, baculovirus transfer vectors, cell lines, infection strategies and formulation buffers), we were able to obtain ~4 mg/L of purified S protein, which, to the best of our knowledge, is the highest value achieved to date using insect cells. In addition, the insect cell-derived S protein exhibited glycan processing similar to mammalian cells and mid-term stability upon storage (up to 90 days at -80 and 4 °C or after 5 freeze-thaw cycles). Noteworthy, antigenicity of S protein, either as single antigen or displayed on the surface of virosomes, was confirmed by ELISA, with binding of ACE2 receptor, pan-SARS antibody CR3022 and neutralizing antibodies to the various epitope clusters on the S protein. Binding capacity was also maintained on virosomes-S stored at 4 °C for 1 month. This work demonstrates the potential of using IC-BEVS to produce the highly glycosylated and complex S protein, without compromising its integrity and antigenicity, to be included in a virosome-based COVID-19 vaccine candidate.

20.
Front Immunol ; 13: 1002430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389677

RESUMO

PfRipr is a highly conserved asexual-blood stage malaria vaccine candidate against Plasmodium falciparum. PfRipr5, a protein fragment of PfRipr inducing the most potent inhibitory antibodies, is a promising candidate for the development of next-generation malaria vaccines, requiring validation of its potential when formulated with adjuvants already approved for human use. In this study, PfRipr5 antigen was efficiently produced in a tank bioreactor using insect High Five cells and the baculovirus expression vector system; purified PfRipr5 was thermally stable in its monomeric form, had high purity and binding capacity to functional monoclonal anti-PfRipr antibody. The formulation of purified PfRipr5 with Alhydrogel®, GLA-SE or CAF®01 adjuvants accepted for human use showed acceptable compatibility. Rabbits immunized with these formulations induced comparable levels of anti-PfRipr5 antibodies, and significantly higher than the control group immunized with PfRipr5 alone. To investigate the efficacy of the antibodies, we used an in vitro parasite growth inhibition assay (GIA). The highest average GIA activity amongst all groups was attained with antibodies induced by immunization with PfRipr5 formulated with CAF®01. Overall, this study validates the potential of adjuvanted PfRipr5 as an asexual blood-stage malaria vaccine candidate, with PfRipr5/CAF®01 being a promising formulation for subsequent pre-clinical and clinical development.


Assuntos
Vacinas Antimaláricas , Animais , Humanos , Coelhos , Antígenos de Protozoários , Anticorpos Antiprotozoários , Plasmodium falciparum , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA