Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Annu Rev Cell Dev Biol ; 39: 331-361, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843925

RESUMO

Microtubules are essential dynamic polymers composed of α/ß-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and ß-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Movimento Celular
2.
Cell ; 179(1): 54-56, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522889

RESUMO

Microtubules are critical for the extension of oligodendrocyte processes and myelin deposition, yet our knowledge of their microtubule biogenesis is limited. In this issue of Cell, Fu et al. (2019) identify an oligodendrocyte-enriched microtubule regulator that promotes microtubule growth from Golgi outposts and controls myelin sheath elongation, linking microtubule cytoarchitecture and myelination in the CNS.


Assuntos
Bainha de Mielina , Oligodendroglia , Microtúbulos
3.
Cell ; 164(5): 911-21, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26875866

RESUMO

Microtubule-severing enzymes are critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles, and cilia where tubulin detyrosination, acetylation, and glutamylation are abundant. These modifications exhibit stereotyped patterns suggesting spatial and temporal control of microtubule functions. Using human-engineered and differentially modified microtubules we find that glutamylation is the main regulator of the hereditary spastic paraplegia microtubule severing enzyme spastin. Glutamylation acts as a rheostat and tunes microtubule severing as a function of glutamate number added per tubulin. Unexpectedly, glutamylation is a non-linear biphasic tuner and becomes inhibitory beyond a threshold. Furthermore, the inhibitory effect of localized glutamylation propagates across neighboring microtubules, modulating severing in trans. Our work provides the first quantitative evidence for a graded response to a tubulin posttranslational modification and a biochemical link between tubulin glutamylation and complex architectures of microtubule arrays such as those in neurons where spastin deficiency causes disease.


Assuntos
Adenosina Trifosfatases/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Paraplegia Espástica Hereditária/metabolismo , Tubulina (Proteína)/metabolismo , Fenômenos Biomecânicos , Ácido Glutâmico/metabolismo , Humanos , Neurônios/metabolismo , Engenharia de Proteínas , Paraplegia Espástica Hereditária/patologia , Espastina
4.
Cell ; 161(5): 1112-1123, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959773

RESUMO

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the ß-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and ß-tubulin, and a flexible cationic domain to bind the microtubule and position itself for ß-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/genética , Alinhamento de Sequência
5.
Cell ; 157(6): 1405-1415, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906155

RESUMO

Acetylation of α-tubulin Lys40 by tubulin acetyltransferase (TAT) is the only known posttranslational modification in the microtubule lumen. It marks stable microtubules and is required for polarity establishment and directional migration. Here, we elucidate the mechanistic underpinnings for TAT activity and its preference for microtubules with slow turnover. 1.35 Å TAT cocrystal structures with bisubstrate analogs constrain TAT action to the microtubule lumen and reveal Lys40 engaged in a suboptimal active site. Assays with diverse tubulin polymers show that TAT is stimulated by microtubule interprotofilament contacts. Unexpectedly, despite the confined intraluminal location of Lys40, TAT efficiently scans the microtubule bidirectionally and acetylates stochastically without preference for ends. First-principles modeling and single-molecule measurements demonstrate that TAT catalytic activity, not constrained luminal diffusion, is rate limiting for acetylation. Thus, because of its preference for microtubules over free tubulin and its modest catalytic rate, TAT can function as a slow clock for microtubule lifetimes.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Microtúbulos/metabolismo , Acetilação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Lisina/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
6.
Nature ; 601(7891): 132-138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912111

RESUMO

Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions1,2. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm3, forming abundant contacts with other organelles4. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer5,6. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.


Assuntos
Centrossomo/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Autofagia , Transporte Biológico , Linhagem Celular , Ácido Glutâmico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Nat Chem Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658656

RESUMO

Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and ß-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a ß-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the ß-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and ß-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.

9.
Proc Natl Acad Sci U S A ; 114(25): 6545-6550, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28576883

RESUMO

Glycylation and glutamylation, the posttranslational addition of glycines and glutamates to genetically encoded glutamates in the intrinsically disordered tubulin C-terminal tails, are crucial for the biogenesis and stability of cilia and flagella and play important roles in metazoan development. Members of the diverse family of tubulin tyrosine ligase-like (TTLL) enzymes catalyze these modifications, which are part of an evolutionarily conserved and complex tubulin code that regulates microtubule interactions with cellular effectors. The site specificity of TTLL enzymes and their biochemical interplay remain largely unknown. Here, we report an in vitro characterization of a tubulin glycylase. We show that TTLL3 glycylates the ß-tubulin tail at four sites in a hierarchical order and that TTLL3 and the glutamylase TTLL7 compete for overlapping sites on the tubulin tail, providing a molecular basis for the anticorrelation between glutamylation and glycylation observed in axonemes. This anticorrelation demonstrates how a combinatorial tubulin code written in two different posttranslational modifications can arise through the activities of related but distinct TTLL enzymes. To elucidate what structural elements differentiate TTLL glycylases from glutamylases, with which they share the common TTL scaffold, we determined the TTLL3 X-ray structure at 2.3-Å resolution. This structure reveals two architectural elements unique to glycyl initiases and critical for their activity. Thus, our work sheds light on the structural and functional diversification of TTLL enzymes, and constitutes an initial important step toward understanding how the tubulin code is written through the intersection of activities of multiple TTLL enzymes.


Assuntos
Peptídeo Sintases/química , Tubulina (Proteína)/química , Animais , Axonema/genética , Cílios/genética , Flagelos/genética , Glutamatos/genética , Glicina/genética , Humanos , Microtúbulos/química , Microtúbulos/genética , Peptídeo Sintases/genética , Processamento de Proteína Pós-Traducional/genética , Tubulina (Proteína)/genética , Tirosina/genética , Xenopus/genética
10.
Proc Natl Acad Sci U S A ; 113(21): E2925-34, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162334

RESUMO

Mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of retinitis pigmentosa, a blinding retinal disease resulting from photoreceptor degeneration. A photoreceptor specific ORF15 variant of RPGR (RPGR(ORF15)), carrying multiple Glu-Gly tandem repeats and a C-terminal basic domain of unknown function, localizes to the connecting cilium where it is thought to regulate cargo trafficking. Here we show that tubulin tyrosine ligase like-5 (TTLL5) glutamylates RPGR(ORF15) in its Glu-Gly-rich repetitive region containing motifs homologous to the α-tubulin C-terminal tail. The RPGR(ORF15) C-terminal basic domain binds to the noncatalytic cofactor interaction domain unique to TTLL5 among TTLL family glutamylases and targets TTLL5 to glutamylate RPGR. Only TTLL5 and not other TTLL family glutamylases interacts with RPGR(ORF15) when expressed transiently in cells. Consistent with this, a Ttll5 mutant mouse displays a complete loss of RPGR glutamylation without marked changes in tubulin glutamylation levels. The Ttll5 mutant mouse develops slow photoreceptor degeneration with early mislocalization of cone opsins, features resembling those of Rpgr-null mice. Moreover TTLL5 disease mutants that cause human retinal dystrophy show impaired glutamylation of RPGR(ORF15) Thus, RPGR(ORF15) is a novel glutamylation substrate, and this posttranslational modification is critical for its function in photoreceptors. Our study uncovers the pathogenic mechanism whereby absence of RPGR(ORF15) glutamylation leads to retinal pathology in patients with TTLL5 gene mutations and connects these two genes into a common disease pathway.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Mutação , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas do Olho/genética , Humanos , Camundongos , Camundongos Knockout , Opsinas/genética , Domínios Proteicos , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/genética
11.
Semin Cell Dev Biol ; 37: 11-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307498

RESUMO

Microtubules are essential cellular polymers assembled from tubulin heterodimers. The tubulin dimer consists of a compact folded globular core and intrinsically disordered C-terminal tails. The tubulin tails form a lawn of densely grafted, negatively charged, flexible peptides on the exterior of the microtubule, potentially akin to brush polymers in the field of synthetic materials. These tails are hotspots for conserved, chemically complex posttranslational modifications that have the potential to act in a combinatorial fashion to regulate microtubule polymer dynamics and interactions with microtubule effectors, giving rise to a "tubulin code". In this review, I summarize our current knowledge of the enzymes that generate the astonishing tubulin chemical diversity observed in cells and describe recent advances in deciphering the roles of tubulin C-terminal tails and their posttranslational modifications in regulating the activity of molecular motors and microtubule associated proteins. Lastly, I outline the promises, challenges and potential pitfalls of deciphering the tubulin code.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Microtúbulos/química , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
12.
J Biol Chem ; 291(25): 12907-15, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129203

RESUMO

Microtubules are polymers that cycle stochastically between polymerization and depolymerization, i.e. they exhibit "dynamic instability." This behavior is crucial for cell division, motility, and differentiation. Although studies in the last decade have made fundamental breakthroughs in our understanding of how cellular effectors modulate microtubule dynamics, analysis of the relationship between tubulin sequence, structure, and dynamics has been held back by a lack of dynamics measurements with and structural characterization of homogeneous isotypically pure engineered tubulin. Here, we report for the first time the cryo-EM structure and in vitro dynamics parameters of recombinant isotypically pure human tubulin. α1A/ßIII is a purely neuronal tubulin isoform. The 4.2-Å structure of post-translationally unmodified human α1A/ßIII microtubules shows overall similarity to that of heterogeneous brain microtubules, but it is distinguished by subtle differences at polymerization interfaces, which are hot spots for sequence divergence between tubulin isoforms. In vitro dynamics assays show that, like mosaic brain microtubules, recombinant homogeneous microtubules undergo dynamic instability, but they polymerize slower and have fewer catastrophes. Interestingly, we find that epitaxial growth of α1A/ßIII microtubules from heterogeneous brain seeds is inefficient but can be fully rescued by incorporating as little as 5% of brain tubulin into the homogeneous α1A/ßIII lattice. Our study establishes a system to examine the structure and dynamics of mammalian microtubules with well defined tubulin species and is a first and necessary step toward uncovering how tubulin genetic and chemical diversity is exploited to modulate intrinsic microtubule dynamics.


Assuntos
Tubulina (Proteína)/química , Animais , Microscopia Crioeletrônica , Humanos , Microtúbulos , Modelos Moleculares , Neurônios/ultraestrutura , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestrutura , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Células Sf9 , Spodoptera , Tubulina (Proteína)/ultraestrutura
14.
J Biol Chem ; 290(28): 17163-72, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957412

RESUMO

Microtubules give rise to intracellular structures with diverse morphologies and dynamics that are crucial for cell division, motility, and differentiation. They are decorated with abundant and chemically diverse posttranslational modifications that modulate their stability and interactions with cellular regulators. These modifications are important for the biogenesis and maintenance of complex microtubule arrays such as those found in spindles, cilia, neuronal processes, and platelets. Here we discuss the nature and subcellular distribution of these posttranslational marks whose patterns have been proposed to constitute a tubulin code that is interpreted by cellular effectors. We review the enzymes responsible for writing the tubulin code, explore their functional consequences, and identify outstanding challenges in deciphering the tubulin code.


Assuntos
Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Humanos , Cinética , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Peptídeo Sintases/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional
15.
Nature ; 451(7176): 363-7, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18202664

RESUMO

Spastin, the most common locus for mutations in hereditary spastic paraplegias, and katanin are related microtubule-severing AAA ATPases involved in constructing neuronal and non-centrosomal microtubule arrays and in segregating chromosomes. The mechanism by which spastin and katanin break and destabilize microtubules is unknown, in part owing to the lack of structural information on these enzymes. Here we report the X-ray crystal structure of the Drosophila spastin AAA domain and provide a model for the active spastin hexamer generated using small-angle X-ray scattering combined with atomic docking. The spastin hexamer forms a ring with a prominent central pore and six radiating arms that may dock onto the microtubule. Helices unique to the microtubule-severing AAA ATPases surround the entrances to the pore on either side of the ring, and three highly conserved loops line the pore lumen. Mutagenesis reveals essential roles for these structural elements in the severing reaction. Peptide and antibody inhibition experiments further show that spastin may dismantle microtubules by recognizing specific features in the carboxy-terminal tail of tubulin. Collectively, our data support a model in which spastin pulls the C terminus of tubulin through its central pore, generating a mechanical force that destabilizes tubulin-tubulin interactions within the microtubule lattice. Our work also provides insights into the structural defects in spastin that arise from mutations identified in hereditary spastic paraplegia patients.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Paraplegia Espástica Hereditária/genética , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Humanos , Microtúbulos/química , Modelos Biológicos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Espastina , Relação Estrutura-Atividade , Especificidade por Substrato , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Difração de Raios X
16.
J Biol Chem ; 287(50): 41569-75, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23105108

RESUMO

Tubulin acetyltransferase (TAT) acetylates Lys-40 of α-tubulin in the microtubule lumen. TAT is inefficient, and its activity is enhanced when tubulin is incorporated in microtubules. Acetylation is associated with stable microtubules and regulates the binding of microtubule motors and associated proteins. TAT is important in neuronal polarity and mechanosensation, and decreased tubulin acetylation levels are associated with axonal transport defects and neurodegeneration. We present the first structure of TAT in complex with acetyl-CoA (Ac-CoA) at 2.7 Å resolution. The structure reveals a conserved stable catalytic core shared with other GCN5 superfamily acetyltransferases consisting of a central ß-sheet flanked by α-helices and a C-terminal ß-hairpin unique to TAT. Structure-guided mutagenesis establishes the molecular determinants for Ac-CoA and tubulin substrate recognition. The wild-type TAT construct is a monomer in solution. We identify a metastable interface between the conserved core and N-terminal domain that modulates the oligomerization of TAT in solution and is essential for activity. The 2.45 Å resolution structure of an inactive TAT construct with an active site point mutation near this interface reveals a domain-swapped dimer in which the functionally essential N terminus shows evidence of marked structural plasticity. The sequence segment corresponding to this structurally plastic region in TAT has been implicated in substrate recognition in other GCN5 superfamily acetyltransferases. Our structures provide a rational platform for the mechanistic dissection of TAT activity and the design of TAT inhibitors with therapeutic potential in neuronal regeneration.


Assuntos
Acetilcoenzima A/química , Acetiltransferases/química , Multimerização Proteica , Proteínas de Peixe-Zebra/química , Peixe-Zebra , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Cristalografia por Raios X , Mutação Puntual , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Bioorg Med Chem Lett ; 23(15): 4408-12, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777780

RESUMO

Tubulin is subject to a reversible post-translational modification involving polyglutamylation and deglutamylation of glutamate residues in its C-terminal tail. This process plays key roles in regulating the function of microtubule associated proteins, neuronal development, and metastatic progression. This study describes the synthesis and testing of three phosphinic acid-based inhibitors that have been designed to inhibit both the glutamylating and deglutamylating enzymes. The compounds were tested against the polyglutamylase TTLL7 using tail peptides as substrates (100 µM) and the most potent inhibitor displayed an IC50 value of 150 µM. The incorporation of these compounds into tubulin C-terminal tail peptides may lead to more potent TTLL inhibitors.


Assuntos
Inibidores Enzimáticos/química , Peptídeo Sintases/antagonistas & inibidores , Ácidos Fosfínicos/química , Animais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Camundongos , Peptídeo Sintases/metabolismo , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/metabolismo , Ligação Proteica
18.
Mol Biol Cell ; 34(7): ar70, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074962

RESUMO

Microtubules are noncovalent polymers built from αß-tubulin dimers. The disordered C-terminal tubulin tails are functionalized with multiple glutamate chains of variable lengths added and removed by tubulin tyrosine ligases (TTLLs) and carboxypeptidases (CCPs). Glutamylation is abundant on stable microtubule arrays such as in axonemes and axons, and its dysregulation leads to human pathologies. Despite this, the effects of glutamylation on intrinsic microtubule dynamics are unclear. Here we generate tubulin with short and long glutamate chains and show that glutamylation slows the rate of microtubule growth and increases catastrophes as a function of glutamylation levels. This implies that the higher stability of glutamylated microtubules in cells is due to effectors. Interestingly, EB1 is minimally affected by glutamylation and thus can report on the growth rates of both unmodified and glutamylated microtubules. Finally, we show that glutamate removal by CCP1 and 5 is synergistic and occurs preferentially on soluble tubulin, unlike TTLL enzymes that prefer microtubules. This substrate preference establishes an asymmetry whereby once the microtubule depolymerizes, the released tubulin is reset to a less-modified state, while polymerized tubulin accumulates the glutamylation mark. Our work shows that a modification on the disordered tubulin tails can directly affect microtubule dynamics and furthers our understanding of the mechanistic underpinnings of the tubulin code.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Ácido Glutâmico/metabolismo , Axonema/metabolismo , Processamento de Proteína Pós-Traducional
19.
Curr Biol ; 32(19): R992-R997, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220094

RESUMO

Stephanie Sarbanes et al. discuss microtubule-severing enzymes, highlighting their shared structure and mechanism and the diversity of processes in which they participate.


Assuntos
Microtúbulos , Katanina/metabolismo , Microtúbulos/metabolismo
20.
Chem Commun (Camb) ; 58(45): 6530-6533, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579270

RESUMO

Tubulin polyglycylation is a posttranslational modification that occurs primarily on the axonemes of flagella and cilia and has been shown to be essential for proper sperm motility. Inhibitors of both the initiase and elongase ligases (TTLL8 and TTLL10) are shown to inhibit tubulin glycylation in the low micromolar range.


Assuntos
Ácidos Fosfínicos , Tubulina (Proteína) , Cílios/metabolismo , Humanos , Masculino , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Motilidade dos Espermatozoides , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA