Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 143: 46-53, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168898

RESUMO

The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.


Assuntos
Mitocôndrias Musculares , Dinâmica Mitocondrial , Músculo Esquelético , Músculo Esquelético/metabolismo , Mitocôndrias Musculares/fisiologia , Humanos
2.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632021

RESUMO

Opa1 participates in inner mitochondrial membrane fusion and cristae morphogenesis. Here, we show that muscle-specific Opa1 ablation causes reduced muscle fiber size, dysfunctional mitochondria, enhanced Fgf21, and muscle inflammation characterized by NF-κB activation, and enhanced expression of pro-inflammatory genes. Chronic sodium salicylate treatment ameliorated muscle alterations and reduced the muscle expression of Fgf21. Muscle inflammation was an early event during the progression of the disease and occurred before macrophage infiltration, indicating that it is a primary response to Opa1 deficiency. Moreover, Opa1 repression in muscle cells also resulted in NF-κB activation and inflammation in the absence of necrosis and/or apoptosis, thereby revealing that the activation is a cell-autonomous process and independent of cell death. The effects of Opa1 deficiency on the expression NF-κB target genes and inflammation were absent upon mitochondrial DNA depletion. Under Opa1 deficiency, blockage or repression of TLR9 prevented NF-κB activation and inflammation. Taken together, our results reveal that Opa1 deficiency in muscle causes initial mitochondrial alterations that lead to TLR9 activation, and inflammation, which contributes to enhanced Fgf21 expression and to growth impairment.


Assuntos
DNA Mitocondrial/genética , GTP Fosfo-Hidrolases/fisiologia , Inflamação/etiologia , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Knockout , Músculo Esquelético/imunologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Necrose , Regeneração , Receptor Toll-Like 9/genética
3.
J Pathol ; 254(3): 213-215, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33630303

RESUMO

The metabolic regulator fibroblast growth factor 21 (FGF21) has been reported as a cardioprotective factor regulating cardiac remodeling in several cardiac diseases. In a recent issue of The Journal of Pathology, Ferrer-Curriu, Guitart-Mampel et al investigated FGF21 in alcoholic cardiomyopathy (ACM). They showed that FGF21 deficiency aggravates alcohol-induced cardiac damage and dysfunction by exacerbating mitochondrial alterations, oxidative stress, and lipid metabolic dysregulation, suggesting FGF21 as a promising therapeutic agent in ACM. Paradoxically, FGF21 cardiac and circulating levels correlate with cardiac damage and oxidative stress in patients with ACM, pointing to FGF21 as a potential biomarker of alcohol-induced cardiac damage. Further studies are needed to address when FGF21 can be used as a diagnostic biomarker and when it can be used as a therapeutic agent to treat ACM. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomiopatia Alcoólica , Cardiomiopatia Alcoólica/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Estresse Oxidativo , Reino Unido
4.
Cell Mol Life Sci ; 78(4): 1305-1328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078210

RESUMO

The dynamic coordination of processes controlling the quality of the mitochondrial network is crucial to maintain the function of mitochondria in skeletal muscle. Changes of mitochondrial proteolytic system, dynamics (fusion/fission), and mitophagy induce pathways that affect muscle mass and performance. When muscle mass is lost, the risk of disease onset and premature death is dramatically increased. For instance, poor quality of muscles correlates with the onset progression of several age-related disorders such as diabetes, obesity, cancer, and aging sarcopenia. To date, there are no drug therapies to reverse muscle loss, and exercise remains the best approach to improve mitochondrial health and to slow atrophy in several diseases. This review will describe the principal mechanisms that control mitochondrial quality and the pathways that link mitochondrial dysfunction to muscle mass regulation.


Assuntos
Envelhecimento/genética , Mitocôndrias/metabolismo , Mitofagia/genética , Músculo Esquelético/crescimento & desenvolvimento , Envelhecimento/patologia , Humanos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Proteólise
5.
PLoS Biol ; 16(8): e2005886, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096135

RESUMO

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/fisiologia , Músculo Esquelético/fisiologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Expressão Gênica , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374852

RESUMO

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Renovação Mitocondrial , Sarcopenia/metabolismo , Animais , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia
7.
Acta Neuropathol ; 132(1): 127-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971100

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicólise/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Transgênicos , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
8.
EMBO J ; 29(10): 1774-85, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20400940

RESUMO

Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro-fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy-lysosome and the ubiquitin-proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial-dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.


Assuntos
Mitocôndrias/metabolismo , Atrofia Muscular/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Linhagem Celular , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Músculo Esquelético/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
9.
J Clin Invest ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869949

RESUMO

The identification of genes that confer either extension of lifespan or accelerate age-related decline was a step forward in understanding the mechanisms of ageing and revealed that it is partially controlled by genetics and transcriptional programs. Here we discovered that the human DNA sequence C16ORF70 encoded for a protein, named MYTHO (Macroautophagy and YouTH Optimizer), which controls life- and health-span. MYTHO protein is conserved from C. elegans to humans and its mRNA was upregulated in aged mice and elderly people. Deletion of the ortholog myt-1 gene in C. elegans dramatically shortened lifespan and decreased animal survival upon exposure to oxidative stress. Mechanistically, MYTHO is required for autophagy likely because it acts as a scaffold that binds WIPI2 and BCAS3 to recruit and assemble the conjugation system at the phagophore, the nascent autophagosome. We conclude that MYTHO is a transcriptionally regulated initiator of autophagy that is central in promoting stress resistance and healthy ageing.

10.
J Mol Cell Cardiol ; 55: 64-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22902321

RESUMO

Mitochondria are dynamic organelles which adapt their morphology by fusion and fission events to the bioenergetic requirements of the cell. Cardiac and skeletal muscles are tissues with high energy demand and mitochondrial plasticity plays a key role in the homeostasis of these cells. Indeed, alterations in mitochondrial morphology, distribution and function are common features in catabolic conditions. Moreover, dysregulation of mitochondrial dynamics affects the signaling pathways that regulate muscle mass. This review discusses the recent findings of the role of mitochondrial fusion/fission and mitophagy in the control of proteolytic pathways. This article is part of a special issue entitled "Focus on Cardiac Metabolism".


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Estriado/metabolismo , Adaptação Biológica , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias Musculares/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Proteólise
11.
Endocr Rev ; 44(4): 668-692, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36725366

RESUMO

Mitochondria sense both biochemical and energetic input in addition to communicating signals regarding the energetic state of the cell. Increasingly, these signaling organelles are recognized as key for regulating different cell functions. This review summarizes recent advances in mitochondrial communication in striated muscle, with specific focus on the processes by which mitochondria communicate with each other, other organelles, and across distant organ systems. Intermitochondrial communication in striated muscle is mediated via conduction of the mitochondrial membrane potential to adjacent mitochondria, physical interactions, mitochondrial fusion or fission, and via nanotunnels, allowing for the exchange of proteins, mitochondrial DNA, nucleotides, and peptides. Within striated muscle cells, mitochondria-organelle communication can modulate overall cell function. The various mechanisms by which mitochondria communicate mitochondrial fitness to the rest of the body suggest that extracellular mitochondrial signaling is key during health and disease. Whereas mitochondria-derived vesicles might excrete mitochondria-derived endocrine compounds, stimulation of mitochondrial stress can lead to the release of fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) into the circulation to modulate whole-body physiology. Circulating mitochondrial DNA are well-known alarmins that trigger the immune system and may help to explain low-grade inflammation in various chronic diseases. Impaired mitochondrial function and communication are central in common heart and skeletal muscle pathologies, including cardiomyopathies, insulin resistance, and sarcopenia. Lastly, important new advances in research in mitochondrial endocrinology, communication, medical horizons, and translational aspects are discussed.


Assuntos
Mitocôndrias , Músculo Esquelético , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
12.
Cell Metab ; 6(6): 458-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18054315

RESUMO

Autophagy allows cell survival during starvation through the bulk degradation of proteins and organelles by lysosomal enzymes. However, the mechanisms responsible for the induction and regulation of the autophagy program are poorly understood. Here we show that the FoxO3 transcription factor, which plays a critical role in muscle atrophy, is necessary and sufficient for the induction of autophagy in skeletal muscle in vivo. Akt/PKB activation blocks FoxO3 activation and autophagy, and this effect is not prevented by rapamycin. FoxO3 controls the transcription of autophagy-related genes, including LC3 and Bnip3, and Bnip3 appears to mediate the effect of FoxO3 on autophagy. This effect is not prevented by proteasome inhibitors. Thus, FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently. These findings point to FoxO3 and Bnip3 as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Animais , Autofagia/genética , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Serina-Treonina Quinases TOR , Ubiquitina/metabolismo
13.
Exp Physiol ; 97(1): 125-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058168

RESUMO

Myostatin regulates both muscle mass and muscle metabolism. The myostatin null (MSTN(-/-)) mouse has a hypermuscular phenotype owing to both hypertrophy and hyperplasia of the myofibres. The enlarged muscles display a reliance on glycolysis for energy production; however, enlarged muscles that develop in the absence of myostatin have compromised force-generating capacity. Recent evidence has suggested that endurance exercise training increases the oxidative properties of muscle. Here, we aimed to identify key changes in the muscle phenotype of MSTN(-/-) mice that can be induced by training. To this end, we subjected MSTN(-/-) mice to two different forms of training, namely voluntary wheel running and swimming, and compared the response at the morphological, myocellular and molecular levels. We found that both regimes normalized changes of myostatin deficiency and restored muscle function. We showed that both exercise training regimes increased muscle capillary density and the expression of Ucp3, Cpt1α, Pdk4 and Errγ, key markers for oxidative metabolism. Cross-sectional area of hypertrophic myofibres from MSTN(-/-) mice decreased towards wild-type values in response to exercise and, in this context, Bnip3, a key autophagy-related gene, was upregulated. This reduction in myofibre size caused an increase of the nuclear-to-cytoplasmic ratio towards wild-type values. Importantly, both training regimes increased muscle force in MSTN(-/-) mice. We conclude that impaired skeletal muscle function in myostatin-deficient mice can be improved through endurance exercise-mediated remodelling of muscle fibre size and metabolic profile.


Assuntos
Hipertrofia/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Miostatina/deficiência , Condicionamento Físico Animal , Indutores da Angiogênese/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Tolerância ao Exercício , Glicólise , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Miostatina/genética , Miostatina/metabolismo , Tamanho do Órgão , Oxirredução , Fenótipo , Ensino
14.
Nat Commun ; 12(1): 330, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436614

RESUMO

Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing.


Assuntos
Doença , Saúde , Atrofia Muscular/patologia , Animais , Humanos , Hipertrofia , Desenvolvimento Muscular , Transdução de Sinais
15.
Nat Commun ; 12(1): 4900, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385433

RESUMO

Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.


Assuntos
Anquirinas/metabolismo , Mitocôndrias Musculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Sarcolema/metabolismo , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia
16.
Curr Hypertens Rep ; 12(6): 433-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20967516

RESUMO

Mitochondria form a dynamic network that rapidly adapts to cellular energy demand. This adaptation is particularly important in skeletal muscle because of its high metabolic rate. Indeed, muscle energy level is one of the cellular checkpoints that lead either to sustained protein synthesis and growth or protein breakdown and atrophy. Mitochondrial function is affected by changes in shape, number, and localization. The dynamics that control the mitochondrial network, such as biogenesis and fusion, or fragmentation and fission, ultimately affect the signaling pathways that regulate muscle mass. Regular exercise and healthy muscles are important players in the metabolic control of human body. Indeed, a sedentary lifestyle is detrimental for muscle function and is one of the major causes of metabolic disorders such as obesity and diabetes. This article reviews the rapid progress made in the past few years regarding the role of mitochondria in the control of proteolytic systems and in the loss of muscle mass and function.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Adaptação Fisiológica , Autofagia/fisiologia , Metabolismo Basal/fisiologia , Exercício Físico/fisiologia , Humanos , Doenças Metabólicas/metabolismo , Mitocôndrias Musculares/fisiologia , Mitocôndrias Musculares/ultraestrutura , Proteínas Musculares/fisiologia , Proteínas Musculares/ultraestrutura , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/fisiopatologia , Transdução de Sinais/fisiologia
17.
Cell Death Dis ; 11(2): 127, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071288

RESUMO

Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.


Assuntos
Antocianinas/administração & dosagem , Suplementos Nutricionais , Mediadores da Inflamação/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Sarcoglicanopatias/dietoterapia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos Knockout , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Biogênese de Organelas , Fenótipo , Carbonilação Proteica , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/deficiência , Sarcoglicanas/genética
18.
J Cachexia Sarcopenia Muscle ; 11(1): 208-225, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651100

RESUMO

BACKGROUND: Skeletal muscle is a plastic tissue that can adapt to different stimuli. It is well established that Mammalian Target of Rapamycin Complex 1 (mTORC1) signalling is a key modulator in mediating increases in skeletal muscle mass and function. However, the role of mTORC1 signalling in adult skeletal muscle homeostasis is still not well defined. METHODS: Inducible, muscle-specific Raptor and mTOR k.o. mice were generated. Muscles at 1 and 7 months after deletion were analysed to assess muscle histology and muscle force. RESULTS: We found no change in muscle size or contractile properties 1 month after deletion. Prolonging deletion of Raptor to 7 months, however, leads to a very marked phenotype characterized by weakness, muscle regeneration, mitochondrial dysfunction, and autophagy impairment. Unexpectedly, reduced mTOR signalling in muscle fibres is accompanied by the appearance of markers of fibre denervation, like the increased expression of the neural cell adhesion molecule (NCAM). Both muscle-specific deletion of mTOR or Raptor, or the use of rapamycin, was sufficient to induce 3-8% of NCAM-positive fibres (P < 0.01), muscle fibrillation, and neuromuscular junction (NMJ) fragmentation in 24% of examined fibres (P < 0.001). Mechanistically, reactivation of autophagy with the small peptide Tat-beclin1 is sufficient to prevent mitochondrial dysfunction and the appearance of NCAM-positive fibres in Raptor k.o. muscles. CONCLUSIONS: Our study shows that mTOR signalling in skeletal muscle fibres is critical for maintaining proper fibre innervation, preserving the NMJ structure in both the muscle fibre and the motor neuron. In addition, considering the beneficial effects of exercise in most pathologies affecting the NMJ, our findings suggest that part of these beneficial effects of exercise are through the well-established activation of mTORC1 in skeletal muscle during and after exercise.


Assuntos
Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
19.
Cells ; 9(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019272

RESUMO

Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.


Assuntos
Envelhecimento/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Animais , Agregação Celular , Denervação , Corpos de Inclusão/metabolismo , Camundongos Transgênicos , Mitocôndrias/patologia , Atividade Motora , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/patologia
20.
Front Physiol ; 10: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057418

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone that regulates important metabolic pathways. FGF21 is expressed in several metabolically active organs and interacts with different tissues. The FGF21 function is complicated and well debated due to its different sites of production and actions. Striated muscles are plastic tissues that undergo adaptive changes within their structural and functional properties in order to meet their different stresses, recently, they have been found to be an important source of FGF21. The FGF21 expression and secretion from skeletal muscles happen in both mouse and in humans during their different physiological and pathological conditions, including exercise and mitochondrial dysfunction. In this review, we will discuss the recent findings that identify FG21 as beneficial and/or detrimental cytokine interacting as an autocrine or endocrine in order to modulate cellular function, metabolism, and senescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA