Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(6): 1507-1518, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951491

RESUMO

Durum wheat is an important cereal that is widely grown in the Mediterranean basin. In addition to high yield, grain quality traits are of high importance for farmers. The strong influence of climatic conditions makes the improvement of grain quality traits, like protein content, vitreousness, and test weight, a challenging task. Evaluation of quality traits post-harvest is time- and labor-intensive and requires expensive equipment, such as near-infrared spectroscopes or hyperspectral imagers. Predicting not only yield but also important quality traits in the field before harvest is of high value for breeders aiming to optimize resource allocation. Implementation of efficient approaches for trait prediction, such as the use of high-resolution spectral data acquired by a multispectral camera mounted on unmanned aerial vehicles (UAVs), needs to be explored. In this study, we have acquired multispectral image data with an 11-band multispectral camera mounted on a UAV and analyzed the data with machine learning (ML) models to predict grain yield and important quality traits in breeding micro-plots. Combining 11-band multispectral data for 34 cultivars and 16 environments allowed to develop ML models with good prediction capability. Applying the trained models to test sets explained a considerable degree of phenotypic variance with good accuracy showing r squared values of 0.84, 0.69, 0.64, and 0.61 and normalized root mean squared errors of 0.17, 0.07, 0.14, and 0.03 for grain yield, protein content, vitreousness, and test weight, respectively.


Assuntos
Grão Comestível , Triticum , Fenótipo , Melhoramento Vegetal
2.
J Integr Plant Biol ; 64(2): 592-618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807514

RESUMO

High-throughput crop phenotyping, particularly under field conditions, is nowadays perceived as a key factor limiting crop genetic advance. Phenotyping not only facilitates conventional breeding, but it is necessary to fully exploit the capabilities of molecular breeding, and it can be exploited to predict breeding targets for the years ahead at the regional level through more advanced simulation models and decision support systems. In terms of phenotyping, it is necessary to determined which selection traits are relevant in each situation, and which phenotyping tools/methods are available to assess such traits. Remote sensing methodologies are currently the most popular approaches, even when lab-based analyses are still relevant in many circumstances. On top of that, data processing and automation, together with machine learning/deep learning are contributing to the wide range of applications for phenotyping. This review addresses spectral and red-green-blue sensing as the most popular remote sensing approaches, alongside stable isotope composition as an example of a lab-based tool, and root phenotyping, which represents one of the frontiers for field phenotyping. Further, we consider the two most promising forms of aerial platforms (unmanned aerial vehicle and satellites) and some of the emerging data-processing techniques. The review includes three Boxes that examine specific case studies.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Fenótipo
3.
Entropy (Basel) ; 22(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33286460

RESUMO

This paper proposes a speech-based method for automatic depression classification. The system is based on ensemble learning for Convolutional Neural Networks (CNNs) and is evaluated using the data and the experimental protocol provided in the Depression Classification Sub-Challenge (DCC) at the 2016 Audio-Visual Emotion Challenge (AVEC-2016). In the pre-processing phase, speech files are represented as a sequence of log-spectrograms and randomly sampled to balance positive and negative samples. For the classification task itself, first, a more suitable architecture for this task, based on One-Dimensional Convolutional Neural Networks, is built. Secondly, several of these CNN-based models are trained with different initializations and then the corresponding individual predictions are fused by using an Ensemble Averaging algorithm and combined per speaker to get an appropriate final decision. The proposed ensemble system achieves satisfactory results on the DCC at the AVEC-2016 in comparison with a reference system based on Support Vector Machines and hand-crafted features, with a CNN+LSTM-based system called DepAudionet, and with the case of a single CNN-based classifier.

4.
Sensors (Basel) ; 19(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995754

RESUMO

Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red-green-blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50), reinforcing RGB HTPP's potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions.

5.
BMC Neurosci ; 18(1): 7, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056790

RESUMO

BACKGROUND: Immunization with neural derived peptides (INDP) as well as scar removal-separately-have shown to induce morphological and functional improvement after spinal cord injury (SCI). In the present study, we compared the effect of INDP alone versus INDP with scar removal on motor recovery, regeneration-associated and cytokine gene expression, and axonal regeneration after chronic SCI. Scar removal was conducted through a single incision with a double-bladed scalpel along the stump, and scar renewal was halted by adding α,α'-dipyridyl. RESULTS: During the chronic injury stage, two experiments were undertaken. The first experiment was aimed at testing the therapeutic effect of INDP combined with scar removal. Sixty days after therapeutic intervention, the expression of genes encoding for TNFα, IFNγ, IL4, TGFß, BDNF, IGF1, and GAP43 was evaluated at the site of injury. Tyrosine hydroxylase and 5-hydroxytryptamine positive fibers were also studied. Locomotor evaluations showed a significant recovery in the group treated with scar removal + INDP. Moreover; this group presented a significant increase in IL4, TGFß, BDNF, IGF1, and GAP43 expression, but a decrease of TNFα and IFNγ. Also, the spinal cord of animals receiving both treatments presented a significant increase of serotonergic and catecholaminergic fibers as compared to other the groups. The second experiment compared the results of the combined approach versus INDP alone. Rats receiving INDP likewise showed improved motor recovery, although on a lesser scale than those who received the combined treatment. An increase in inflammation and regeneration-associated gene expression, as well as in the percentage of serotonergic and catecholaminergic fibers was observed in INDP-treated rats to a lesser degree than those in the combined therapy group. CONCLUSIONS: These findings suggest that INDP, both alone and in combination with scar removal, could modify the non-permissive microenvironment prevailing at the chronic phase of SCI, providing the opportunity of improving motor recovery.


Assuntos
Cicatriz/metabolismo , Locomoção/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Vacinação , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteína GAP-43/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Interferon gama/metabolismo , Interleucina-4/metabolismo , Neuropeptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico , Regeneração da Medula Espinal/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
BMC Neurosci ; 17(1): 42, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27364353

RESUMO

BACKGROUND: After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote-in vitro-the production of neurotrophic factors. However, the production of these molecules has not been studied at the site of injury. RESULTS: In order to evaluate these issues, we performed four experiments in adult female Sprague-Dawley rats. In the first one, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) concentrations were evaluated at the site of lesion 21 days after SC-injury. BDNF and NT-3 were significantly increased in INDP-treated animals. In the second experiment, proliferation of anti-A91 T cells was assessed at chronic stages of injury. In this case, we found a significant proliferation of these cells in animals subjected to SC-injury + INDP. In the third experiment, we explored the amount of BDNF and NT3 at the site of injury in the chronic phase of rats subjected to either SC-contusion (SCC; moderate or severe) or SC-transection (SCT; complete or incomplete). The animals were treated with INDP immediately after injury. Rats subjected to moderate contusion or incomplete SCT showed significantly higher levels of BDNF and NT-3 as compared to PBS-immunized ones. In rats with severe SCC and complete SCT, BDNF and NT-3 concentrations were barely detected. Finally, in the fourth experiment we assessed motor function recovery in INDP-treated rats with moderate SC-injury. Rats immunized with A91 showed a significantly higher motor recovery from the first week and up to 4 months after SC-injury. CONCLUSIONS: The results of this study suggest that PA boosted by immunization with A91 after moderate SC-injury can exert its benefits even at chronic stages, as shown by long-term production of BDNF and NT-3 and a substantial improvement in motor recovery.


Assuntos
Autoimunidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Básica da Mielina/imunologia , Neurotrofina 3/metabolismo , Fragmentos de Peptídeos/imunologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/terapia , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Atividade Motora , Distribuição Aleatória , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Medula Espinal/imunologia , Fatores de Tempo , Vacinação
7.
Cell Physiol Biochem ; 34(6): 2081-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25562156

RESUMO

BACKGROUND/AIMS: The finding that endogenous ouabain acts as a hormone prompted efforts to elucidate its physiological function. In previous studies, we have shown that 10 nM ouabain (i.e., a concentration within the physiological range) modulates cell-cell contacts such as tight junctions and apical/basolateral polarity. In this study, we examined whether 10 nM ouabain affects another important cell-cell feature: gap junction communication (GJC). METHODS: We employed two different approaches: 1) analysis of the cell-to-cell diffusion of neurobiotin injected into a particular MDCK cell (epithelial cells from dog kidneys) in a confluent monolayer by counting the number of neighboring cells reached by the probe and 2) measurement of the electrical capacitance. RESULTS: We found that 10 nM ouabain increase GJC by 475% within 1 hour. The Na+-K+-ATPase acts as a receptor of ouabain. In previous works we have shown that ouabain activates c-Src and ERK1/2 in 1 hour; in the present study we show that the inhibition of these proteins block the effect of ouabain on GJC. This increase in GJC does not require synthesis of new protein components, because the inhibitors cycloheximide and actinomycin D did not affect this phenomenon. Using silencing assays we also demonstrate that this ouabain-induced enhancement of GJC involves connexins 32 and 43. CONCLUSION: Ouabain 10 nM increases GJC in MDCK cells.


Assuntos
Comunicação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Junções Comunicantes/efeitos dos fármacos , Ouabaína/administração & dosagem , Animais , Cães , Células Epiteliais/efeitos dos fármacos , Células Madin Darby de Rim Canino
8.
Zebrafish ; 21(4): 287-293, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608227

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that is clinically assessed by motor symptoms associated with the loss of midbrain dopaminergic neurons affecting the quality of life for over 8.5 million people worldwide. The neurotoxin 6-hydroxydopamine (6-OHDA) has been used to chemically induce a PD-like state in zebrafish larvae by several laboratories; however, highly variable concentration, methodology, and reagents have resulted in conflicting results suggesting a need to investigate these issues of reproducibility. We propose a protocol that addresses the differences in methodology and induces changes in 6 days postfertilization (dpf) larvae utilizing a 24-h exposure at 3 dpf with 30 µM 6-OHDA. Despite ∼50% lethality, no morphological or development differences in surviving fish are observed. Definition of our model is defined by downregulation of the expression of th1 by reverse transcriptase-quantitative polymerase chain reaction, a marker for dopaminergic neurons and a reduction in movement. Additionally, we observed a downregulation of pink1 and an upregulation of sod1 and sod2, indicators of mitochondrial dysfunction and response to reactive oxygen species, respectively.


Assuntos
Neurônios Dopaminérgicos , Larva , Oxidopamina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Oxidopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Neurotoxinas/toxicidade , Modelos Animais de Doenças , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Proteínas Serina-Treonina Quinases
9.
Front Plant Sci ; 14: 1245362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964999

RESUMO

Introduction: Climate change poses significant challenges to agriculture, impacting crop yields and necessitating adaptive strategies in breeding programs. This study investigates the genetic yield progress of wheat varieties in Catalonia, Spain, from 2007 to 2021, and examines the relationship between genetic yield and climate-related factors, such as temperature. Understanding these dynamics is crucial for ensuring the resilience of wheat crops in the face of changing environmental conditions. Methods: Genetic yield progress was assessed using a linear regression function, comparing the average yield changes of newly released wheat varieties to benchmark varieties. Additionally, a quadratic function was employed to model genetic yield progress in winter wheat (WW). The study also analyzed correlations between genetic yield (GY) and normalized values of hectoliter weight (HLW) and the number of grains (NG) for both spring wheat (SW) and WW. Weather data were used to confirm climate change impacts on temperature and its effects on wheat growth and development. Results: The study found that genetic yield was stagnant for SW but increased linearly by 1.31% per year for WW. However, the quadratic function indicated a possible plateau in WW genetic yield progress in recent years. Positive correlations were observed between GY and normalized values of HLW and NG for both SW and WW. Climate change was evident in Catalonia, with temperatures increasing at a rate of 0.050 °C per year. This rise in temperature had detrimental effects on days to heading (DH) and HLW, with reductions observed in both SW and WW for each °C increase in annual minimum and average temperature. Discussion: The findings highlighted the urgent need to address the impact of climate change on wheat cultivation. The stagnation of genetic yield in SW and the potential plateau in WW genetic yield progress call for adaptive measures. Breeding programs should prioritize phenological adjustments, particularly sowing date optimization, to align with the most favorable months of the year. Moreover, efforts should be made to enhance HLW and the number of grains per unit area in new wheat varieties to counteract the negative effects of rising temperatures. This research underscores the importance of ongoing monitoring and adaptation in agricultural practices to ensure yield resilience in the context of a changing climate.

10.
Front Plant Sci ; 14: 1063983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077632

RESUMO

The development of accurate grain yield (GY) multivariate models using normalized difference vegetation index (NDVI) assessments obtained from aerial vehicles and additional agronomic traits is a promising option to assist, or even substitute, laborious agronomic in-field evaluations for wheat variety trials. This study proposed improved GY prediction models for wheat experimental trials. Calibration models were developed using all possible combinations of aerial NDVI, plant height, phenology, and ear density from experimental trials of three crop seasons. First, models were developed using 20, 50 and 100 plots in training sets and GY predictions were only moderately improved by increasing the size of the training set. Then, the best models predicting GY were defined in terms of the lowest Bayesian information criterion (BIC) and the inclusion of days to heading, ear density or plant height together with NDVI in most cases were better (lower BIC) than NDVI alone. This was particularly evident when NDVI saturates (with yields above 8 t ha-1) with models including NDVI and days to heading providing a 50% increase in the prediction accuracy and a 10% decrease in the root mean square error. These results showed an improvement of NDVI prediction models by the addition of other agronomic traits. Moreover, NDVI and additional agronomic traits were unreliable predictors of grain yield in wheat landraces and conventional yield quantification methods must be used in this case. Saturation and underestimation of productivity may be explained by differences in other yield components that NDVI alone cannot detect (e.g. differences in grain size and number).

11.
Front Plant Sci ; 14: 1254301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731983

RESUMO

An acceleration of the genetic advances of durum wheat, as a major crop for the Mediterranean region, is required, but phenotyping still represents a bottleneck for breeding. This study aims to define durum wheat ideotypes under Mediterranean conditions by selecting the most suitable phenotypic remote sensing traits among different ones informing on characteristics related with leaf pigments/photosynthetic status, crop water status, and crop growth/green biomass. A set of 24 post-green revolution durum wheat cultivars were assessed in a wide set of 19 environments, accounted as the specific combinations of a range of latitudes in Spain, under different management conditions (water regimes and planting dates), through 3 consecutive years. Thus, red-green-blue and multispectral derived vegetation indices and canopy temperature were evaluated at anthesis and grain filling. The potential of the assessed remote sensing parameters alone and all combined as grain yield (GY) predictors was evaluated through random forest regression models performed for each environment and phenological stage. Biomass and plot greenness indicators consistently proved to be reliable GY predictors in all of the environments tested for both phenological stages. For the lowest-yielding environment, the contribution of water status measurements was higher during anthesis, whereas, for the highest-yielding environments, better predictions were reported during grain filling. Remote sensing traits measured during the grain filling and informing on pigment content and photosynthetic capacity were highlighted under the environments with warmer conditions, as the late-planting treatments. Overall, canopy greenness indicators were reported as the highest correlated traits for most of the environments and regardless of the phenological moment assessed. The addition of carbon isotope composition of mature kernels was attempted to increase the accuracies, but only a few were slightly benefited, as differences in water status among cultivars were already accounted by the measurement of canopy temperature.

12.
Plants (Basel) ; 12(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005747

RESUMO

Monitoring plant growth and development during cultivation to optimize resource use efficiency is crucial to achieve an increased sustainability of agriculture systems and ensure food security. In this study, we compared field monitoring approaches from the macro to micro scale with the aim of developing novel in vivo tools for field phenotyping and advancing the efficiency of drought stress detection at the field level. To this end, we tested different methodologies in the monitoring of tomato growth under different water regimes: (i) micro-scale (inserted in the plant stem) real-time monitoring with an organic electrochemical transistor (OECT)-based sensor, namely a bioristor, that enables continuous monitoring of the plant; (ii) medium-scale (<1 m from the canopy) monitoring through red-green-blue (RGB) low-cost imaging; (iii) macro-scale multispectral and thermal monitoring using an unmanned aerial vehicle (UAV). High correlations between aerial and proximal remote sensing were found with chlorophyll-related indices, although at specific time points (NDVI and NDRE with GGA and SPAD). The ion concentration and allocation monitored by the index R of the bioristor during the drought defense response were highly correlated with the water use indices (Crop Water Stress Index (CSWI), relative water content (RWC), vapor pressure deficit (VPD)). A high negative correlation was observed with the CWSI and, in turn, with the RWC. Although proximal remote sensing measurements correlated well with water stress indices, vegetation indices provide information about the crop's status at a specific moment. Meanwhile, the bioristor continuously monitors the ion movements and the correlated water use during plant growth and development, making this tool a promising device for field monitoring.

13.
Cell Transplant ; 31: 9636897221109884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35808825

RESUMO

Spinal cord injury (SCI) causes a dysfunction of sympathetic nervous system innervation that affects the immune system, leading to immunosuppression syndrome (ISS) and contributing to patient degeneration and increased risk of several infections. A possible therapeutic strategy that could avoid further patient deterioration is the supplementation with Vitamin E or trace elements, such as Zinc, Selenium, and Copper, which individually promotes T-cell differentiation and proliferative responses. For this reason, the aim of the present study was to evaluate whether Vitamin E, Zinc, Selenium, and Copper supplementation preserves the number of T-lymphocytes and improves their proliferative function after traumatic SCI. Sprague-Dawley female rats were subjected to moderate SCI and then randomly allocated into three groups: (1) SCI + supplements; (2) SCI + vehicle (olive oil and phosphate-buffered saline); and (3) sham-operated rats. In all rats, the intervention was initiated 15 min after SCI and then administered daily until the end of study. Locomotor recovery was assessed at 7 and 15 days after SCI. At 15 days after supplementation, the quantification of the number of T-cells and its proliferation function were examined. Our results showed that the SCI + supplements group presented a significant improvement in motor recovery at 7 and 15 days after SCI. In addition, this group showed a better T-cell number and proliferation rate than that observed in the group with SCI + vehicle. Our findings suggest that Vitamin E, Zinc, Selenium, and Copper supplementation could be part of a therapy for patients suffering from acute SCI, helping to preserve T-cell function, avoiding complications, and promoting a better motor recovery. All procedures were approved by the Animal Bioethics and Welfare Committee (Approval No. 201870; CSNBTBIBAJ 090812960).


Assuntos
Selênio , Traumatismos da Medula Espinal , Animais , Cobre/uso terapêutico , Suplementos Nutricionais , Feminino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Selênio/farmacologia , Selênio/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Linfócitos T , Vitamina E/farmacologia , Vitamina E/uso terapêutico , Zinco/farmacologia , Zinco/uso terapêutico
14.
Data Brief ; 40: 107754, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005145

RESUMO

Ideotypic characteristics of durum wheat associated with higher yield under different water and temperature regimes were studied under Mediterranean conditions. The focus of this paper is to provide raw and supplemental data from the research article entitled "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions" [1], which aims to define specific durum wheat ideotypes according to their responses to different agronomic conditions. In this context, six modern (i.e. post green revolution) genotypes with contrasting yield performance (i.e. high vs low yield) were grown during two consecutive years under different treatments: (i) winter planting under support-irrigation conditions, (ii) winter planting under rainfed conditions, (iii) late planting under support-irrigation. Trials were conducted at the INIA station of Colmenar de Oreja (Madrid). Different traits were assessed to inform about water status (canopy temperature at anthesis and stable carbon isotope composition (δ13C) of the flag leaf and mature grains), root performance (root traits and the oxygen isotope composition (δ18O) in the stem base water), phenology (days from sowing to heading), nitrogen status/photosynthetic capacity (nitrogen content and stable isotope composition (δ15N) of the flag leaf and mature grain together with the pigment contents and the nitrogen balance index (NBI) of the flag leaf), crop growth (plant height (PH) and the normalized difference vegetation index (NDVI) at anthesis), grain yield and agronomic yield components. For most of the parameters assessed, data analysis demonstrated significant differences among genotypes within each treatment. The level of significance was determined using the Tukey-b test on independent samples, and ideotypes were modelled from the results of principle component analysis. The present data shed light on traits that help to define specific ideotype characteristics that confer genotypic adaptation to a wide range of agronomic conditions produced by variations in planting date, water conditions and season.

15.
Front Genet ; 12: 788346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899866

RESUMO

While cartilage is an ancient tissue found both in protostomes and deuterostomes, its mineralization evolved more recently, within the vertebrate lineage. SPARC, SPARC-L, and the SCPP members (Secretory Calcium-binding PhosphoProtein genes which evolved from SPARC-L) are major players of dentine and bone mineralization, but their involvement in the emergence of the vertebrate mineralized cartilage remains unclear. We performed in situ hybridization on mineralizing cartilaginous skeletal elements of the frog Xenopus tropicalis (Xt) and the shark Scyliorhinus canicula (Sc) to examine the expression of SPARC (present in both species), SPARC-L (present in Sc only) and the SCPP members (present in Xt only). We show that while mineralizing cartilage expresses SPARC (but not SPARC-L) in Sc, it expresses the SCPP genes (but not SPARC) in Xt, and propose two possible evolutionary scenarios to explain these opposite expression patterns. In spite of these genetic divergences, our data draw the attention on an overlooked and evolutionarily conserved peripheral cartilage subdomain expressing SPARC or the SCPP genes and exhibiting a high propensity to mineralize.

16.
Front Cell Dev Biol ; 9: 801652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155449

RESUMO

The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.

17.
Water Environ Res ; 93(2): 316-327, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32706455

RESUMO

This study quantifies volatile sulfur compound (VSC) emissions from primary settling tanks and investigates their mechanisms of generation. Hydrogen sulfide (H2 S) and methyl mercaptan (MM) concentrations in the off-gas were dominant among the VSCs analyzed, while dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were under their odor threshold for most sampling dates. H2 S emission in primary settling tanks was mainly the result of the stripping of dissolved sulfide (64%) generated in the sewers. Results indicate that MM emission was more dependent on the conditions in the primary clarifiers (only 16% stripping). Prevention of odor emission in primary settling tanks can be achieved by managing biofilms and microbial reactions in the sewer network. Controlling the biomass seeding and fermentation product availability in the primary settling tanks is essential to significantly minimize the kinetics of H2 S and MM generation. Overall, the management of sludge blanket heights and thus avoiding time at low oxidation-reduction potential minimized odor emission independent of sewer conditions. PRACTITIONER POINTS: H2 S emission from primary clarifiers mainly originated from the stripping of the dissolved sulfide formed in the sewers. MM emission contributed for 89% to overall odor emitted from primary clarifiers. Seeding of active biomass from the sewer into the primary clarifiers was be the main driver for both MM and H2 S formation. Increased availability of fermentation products or fermenters increased MM production.


Assuntos
Compostos de Enxofre , Recursos Hídricos , Odorantes/análise , Esgotos , Enxofre
18.
Water Environ Res ; 93(8): 1263-1275, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33423314

RESUMO

This study evaluated the impact of ammonia on mesophilic anaerobic digestion (AD) with thermal hydrolysis pretreatment (THP) treating a mixture of primary sludge and waste activated sludge and operated under constant organic loading rate of 9 kg COD/m3 /d. Free ammonia concentrations in the digesters were varied between 37 and 966 mg NH3 -N/L, while maintaining all other operational conditions constant. A decrease in volatile solids reduction from 54 ± 5% (at <554 mg NH3 -N/L) to 35 ± 6% at the maximum free ammonia concentration of 966 mg NH3 -N/L was observed at steady-state conditions. No impact of free ammonia on final dewaterability was detected. Free ammonia thus mostly limited methanogenesis. A free ammonia Monod inhibition constant of 847 ± 222 mg NH3 -N/L for methanogens was estimated based on the digester steady-state methane rates dynamics. This study showed that current THP AD digesters (typically 110-260 mg NH3 -N/L) operate under 12%-18% ammonia inhibition for methanogenesis. Operation under SRT of 15 days, about 2 times more than needed to retain methanogens, can compensate for lower methanogens rates and avoid performance impacts. The later shows a good potential to operate under higher free and total ammonia concentration without jeopardizing performance. PRACTITIONER POINTS: Only from a free ammonia concentration above 554 mg NH3 -N/L, decreased volatile solids reduction and biogas yield were observed. A volatile solids reduction of 35 ± 6% at maximum free ammonia concentration of 966 mg NH3 -N/L was still achieved. A Monod inhibition constant for methanogens of 847 ± 222 mg NH3 -N/L was estimated. It was estimated that current THP AD systems (110-260 mg NH3 -N/L) operate under 12%-18% NH3 inhibition for methanogenesis.


Assuntos
Amônia , Esgotos , Anaerobiose , Reatores Biológicos , Metano
19.
Front Plant Sci ; 12: 687622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267771

RESUMO

Understanding the interaction between genotype performance and the target environment is the key to improving genetic gain, particularly in the context of climate change. Wheat production is seriously compromised in agricultural regions affected by water and heat stress, such as the Mediterranean basin. Moreover, wheat production may be also limited by the nitrogen availability in the soil. We have sought to dissect the agronomic and physiological traits related to the performance of 12 high-yield European bread wheat varieties under Mediterranean rainfed conditions and different levels of N fertilization during two contrasting crop seasons. Grain yield was more than two times higher in the first season than the second season and was associated with much greater rainfall and lower temperatures. However, the nitrogen effect was rather minor. Genotypic effects existed for the two seasons. While several of the varieties from central/northern Europe yielded more than those from southern Europe during the optimal season, the opposite trend occurred in the dry season. The varieties from central/northern Europe were associated with delayed phenology and a longer crop cycle, while the varieties from southern Europe were characterized by a shorter crop cycle but comparatively higher duration of the reproductive period, associated with an earlier beginning of stem elongation and a greater number of ears per area. However, some of the cultivars from northern Europe maintained a relatively high yield capacity in both seasons. Thus, KWS Siskin from the UK exhibited intermediate phenology, resulting in a relatively long reproductive period, together with a high green area throughout the crop cycle.

20.
Neural Regen Res ; 16(7): 1273-1280, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318405

RESUMO

Several therapies have shown obvious effects on structural conservation contributing to motor functional recovery after spinal cord injury (SCI). Nevertheless, neither strategy has achieved a convincing effect. We purposed a combined therapy of immunomodulatory peptides that individually have shown significant effects on motor functional recovery in rats with SCI. The objective of this study was to investigate the effects of the combined therapy of monocyte locomotion inhibitor factor (MLIF), A91 peptide, and glutathione monoethyl ester (GSH-MEE) on chronic-stage spinal cord injury. Female Sprague-Dawley rats underwent a laminectomy of the T9 vertebra and a moderate contusion. Six groups were included: sham, PBS, MLIF + A91, MLIF + GSH-MEE, A91 + GSH-MEE, and MLIF + A91 + GSH-MEE. Two months after injury, motor functional recovery was evaluated using the open field test. Parenchyma and white matter preservation was evaluated using hematoxylin & eosin staining and Luxol Fast Blue staining, respectively. The number of motoneurons in the ventral horn and the number of axonal fibers were determined using hematoxylin & eosin staining and immunohistochemistry, respectively. Collagen deposition was evaluated using Masson's trichrome staining. The combined therapy of MLIF, A91, and GSH-MEE greatly contributed to motor functional recovery and preservation of the medullary parenchyma, white matter, motoneurons, and axonal fibres, and reduced the deposition of collagen in the lesioned area. The combined therapy of MLIF, A91, and GSH-MEE preserved spinal cord tissue integrity and promoted motor functional recovery of rats after SCI. This study was approved by the National Commission for Scientific Research on Bioethics and Biosafety of the Instituto Mexicano del Seguro Social under registration number R-2015-785-116 (approval date November 30, 2015) and R-2017-3603-33 (approval date June 5, 2017).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA