Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 260-267, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678598

RESUMO

In recent decades, extraordinary attention has been devoted to cell death pathways principally because of multifaceted regulatory roles in normal developmental and pathophysiological processes. The removal of functionally defective, infected or potentially malignant cells is regulated by programmed cell death (PCD) cascades.  Pyroptotic cell death is a highly complicated pro-inflammatory form of cell death. Pyroptosis is characterized by the formation of pores in the plasma membrane by oligomerization of the N-terminal fragment of gasdermins (gasdermin-NT) following the cleavage of gasdermin. Pyroptosis plays a pivotal role in the innate immune responses and mechanistically steered by inflammasome-mediated and inflammasome-independent cascades. In this review, we have comprehensively analyzed how different signaling pathways regulated pyroptosis in cancer inhibition and metastatic spread of cancer cells to the secondary sites. Comprehensive understanding of the interconnection between signaling pathways and pyroptosis will enable us to reap maximum benefits from the exciting mechanistic insights gained from pioneering studies related to pyroptosis.


Assuntos
Imunoterapia , Inflamassomos , Neoplasias , Piroptose , Transdução de Sinais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Inflamassomos/metabolismo , Inflamassomos/imunologia , Animais
2.
Cell Biochem Funct ; 42(4): e3995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751103

RESUMO

In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.


Assuntos
Carcinogênese , Melatonina , Metástase Neoplásica , Neoplasias , RNA não Traduzido , Melatonina/metabolismo , Humanos , Carcinogênese/metabolismo , RNA não Traduzido/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Animais
3.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 250-257, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715372

RESUMO

OSCC is a genomically complicated disease and advancements in the modern era of molecular oncology have enabled researchers to portray near-to-complete resolution of signaling landscape. Over the last two decades, overwhelming proof-of-concept has established mechanistic regulatory role of non-coding RNAs in carcinogenesis, including OSCC. Circular RNAs demonstrate a burgeoning facet of oncology research and molecular biologists are only beginning to appreciate and recognize the significance of circRNAs in the pathogenesis of OSCC. Regulatory roles of non-coding RNAs in the re-shaping of signaling pathways offer plausible strategies for prevention/inhibition of OSCC. Circular RNAs have mechanistic roles in OSCC and "sponge effects" mediated by a wider variety of circRNAs need to be rationally targeted for effective cancer prevention. Phenomenal and cutting-edge research works in different types of animal models will further refine our knowledge for selection of most promising circRNAs as pharmacologically valuable targets.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Circular/genética , Neoplasias Bucais/genética
4.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 200-207, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495495

RESUMO

The diversity of highly bioactive and pharmacologically active natural products which recognize essential biological targets having exquisite specificity, constitutes a massive pharmacological database for discovery of valuable drugs. The rapid accumulation of information has revealed chemopreventive role of nobiletin against wide variety of cancers. Recent efforts are now being expanded and new integrative omics technologies have illuminated continuously upgrading list of molecular mechanisms which underlie carcinogenesis and metastasis. In this mini-review, we explore the progress that has been made in the identification of promising molecular targets of nobiletin.


Assuntos
Quimioprevenção , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Carcinogênese
5.
Cell Mol Biol (Noisy-le-grand) ; 67(6): 318-329, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35818180

RESUMO

On the translational front, integrative genomic approaches have spurred the identification of diverse mechanisms of drug resistance, tumor heterogeneity, metastasis and emerging preclinical targets. Recent breakthroughs in oncogenic cell signaling pathways have forged new links and multi-disciplinary researchers have unraveled different facets of signaling landscapes. Natural product research has witnessed breakneck developments mainly in the context of the ever-expanding list of bioactive components having significantly pharmacological properties. Genistein has gradually gained appreciation because of its multifaceted roles in the prevention and inhibition of carcinogenesis and metastasis. More importantly, the entry of genistein into various phases of clinical trials substantiates the medicinal and pharmacological significance of genistein in cancer chemoprevention. In this review, we have attempted to summarize how genistein regulated different oncogenic pathways in carcinogenesis and metastasis. Furthermore, genistein-mediated regulation of non-coding RNAs is also an interesting feature that has been included in this review to realistically analyze how genistein-mediated control of miRNAs, lncRNAs and circRNAs influence carcinogenesis. In the later sections, we have provided a summary of clinical trials related to genistein for cancer prevention/inhibition. However, apart from the optimistic approaches to further investigate genistein-mediated cancer-inhibitory effects, certain hints have emerged which underscore the pro-metastatic role of genistein. Therefore, the pro-metastatic role of genistein in different cancers should be rationally tested in a broader context because these properties in the future may reduce the enthusiasm in the quest to pursue genistein as a potent cancer chemopreventive agent.


Assuntos
Genisteína , Neoplasias , Carcinogênese/genética , Genisteína/farmacologia , Genisteína/uso terapêutico , Humanos , Neoplasias/genética , Oncogenes , Transdução de Sinais
6.
Cell Mol Biol (Noisy-le-grand) ; 68(2): 213-226, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35869706

RESUMO

Recent phenomenal advancements in genomic and proteomic technologies and rapid breakthroughs in the interpretation of large gene expression datasets have enabled scientists to comprehensively characterize the gene signatures involved in ferroptosis. Ferroptosis is an iron-dependent form of non-apoptotic cell death that has gained the worthwhile attention of both basic and clinical researchers. Ferroptosis has dichotomous, context-dependent functions both as a tumor suppressor and promoter of carcinogenesis. Essentially, pharmacological modulation of ferroptosis by its induction as well as its inhibition holds enormous potential to overcome drug resistance and to improve the therapeutic potential of chemotherapeutic drugs in a wide variety of cancers.


Assuntos
Ferroptose , Neoplasias , Carcinogênese , Ferroptose/genética , Humanos , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteômica
7.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 212-223, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933706

RESUMO

Wealth of information has revolutionized our understanding related to the genetics and functional genomics of this heterogeneous disease. Keeping in view the heterogeneity of ovarian cancer, long-term survival might be achieved by translation of recently emerging mechanistic insights at the cellular and molecular levels to personalize individual strategies for treatment and to identify biomarkers for early detection. Importantly, the motility and invasive properties of ovarian cancer cells are driven by a repertoire of signaling cascades, many components of which have been experimentally verified as therapeutic targets in preclinical models as well as in clinical trials. Scientific evidence garnered over decades of research has deconvoluted the highly intricate intertwined network of intracellular signaling pathways which played fundamental role in carcinogenesis and metastasis. In this review we have provided a compendium of myriad of signaling cascades which have been documented to play critical role in the progression and metastasis of ovarian cancer. We have partitioned this multi-component review into different sections to individually discuss and summarize the roles of TGF/SMAD, JAK/STAT, Wnt/ß-Catenin, NOTCH, SHH/GLI, mTORC1/mTORC2, VEGFR and Hippo/YAP pathways in ovarian cancer metastasis.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Genômica/métodos , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Animais , Apoptose/genética , Carcinogênese/genética , Modelos Animais de Doenças , Feminino , Humanos , Modelos Genéticos , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia
8.
J Cell Biochem ; 120(2): 1060-1067, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30278099

RESUMO

Wealth of information gleaned from decades of high-impact research work; scientists have disentangled the complicated web of versatile regulators that underlie cancer development and progression. Use of structural biology approaches and functional genomics have helped us to gain new insights into complex nature of cancer, and it is now clear that genetic/epigenetic mutations, overexpression of oncogenes, inactivation of tumor suppressors, loss of apoptosis, and versatility of protein binding partners have contributory roles in carcinogenesis and metastatic spread. It is becoming progressively more understandable that reprogramming of gene expression during and nontranscriptional changes during cancer development and progression are initiated and controlled by deregulated signal transduction cascades, all of which collectively create an incalculable complexity. Data obtained through preclinical and clinical trials revealed that alterations in the targeted oncogenes and other downstream, and parallel pathways played a central role in the development of resistance against different therapeutics. Phytochemicals have regained limelight, and different natural products are currently being tested for efficacy in preclinical studies. Apigenin, a plant-derived flavonoid has considerable pharmacological value and is reportedly involved in the regulation of different signaling cascades. In this review, we have attempted to summarize rapidly evolving understanding of molecular biologists and pharmacologists about the potential of apigenin in the regulation of deregulated signaling pathways in different cancers. We have emphasized on the regulation of WNT/ß-catenin and janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. We also comprehensively discuss how apigenin restored apoptosis in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant cancers. The review also gives a snapshot of microRNAs (miRNAs) that regulate wide-ranging biological processes, and it is now clear that each miRNA can control hundreds of gene targets. Apigenin was noted to upregulate miR-520b and miR-101 in different cancers to inhibit tumor growth. Moreover, apigenin-induced apoptotic rate was significantly higher when used in combination with miR-423-5p inhibitors or miR-138 mimics. Better comprehension of linear and integrated signaling pathways will be helpful in effective therapeutic targeting of deregulated signaling pathways to inhibit/prevent cancer.

9.
Adv Exp Med Biol ; 1152: 365-375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456194

RESUMO

Massively parallel sequencing, genomic and proteomic technologies have provided near complete resolution of signaling landscape of breast cancer (BCa). NEDD4 family of E3-ubiquitin ligases comprises a large family of proteins particularly, SMURFs (SMURF1, SMURF2), WWPs and NEDD4 which are ideal candidates for targeted therapy. However, it is becoming progressively more understandable that SMURFs and NEDD4 have "split-personalities". These molecules behave dualistically in breast cancer and future studies must converge on detailed identification of context specific role of these proteins in BCa. Finally, we provide scattered clues of regulation of SMURF2 by oncogenic miRNAs, specifically considering longstanding questions related to regulation of SMURF1 and WWPs by miRNAs in BCa. SMURFS, WWPs and NEDD4 are versatile regulators and represent a fast-growing field in cancer research and better understanding of the underlying mechanisms will be helpful in transition of our knowledge from a segmented view to a more conceptual continuum.


Assuntos
Neoplasias da Mama/enzimologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias da Mama/genética , Feminino , Humanos , MicroRNAs/genética , Oncogenes , Proteômica , Transdução de Sinais , Ubiquitinação
10.
Adv Exp Med Biol ; 1152: 65-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456180

RESUMO

The term "autophagy", which means "self (auto) - eating (phagy)", describes a catabolic process that is evolutionarially conserved among all eukaryotes. Although autophagy is mainly accepted as a cell survival mechanism, it also modulates the process known as "type II cell death". AKT/mTOR pathway is an upstream activator of autophagy and it is tightly regulated by the ATG (autophagy-related genes) signaling cascade. In addition, wide ranging cell signaling pathways and non-coding RNAs played essential roles in the control of autophagy. Autophagy is closely related to pathological processes such as neurodegenerative diseases and cancer as well as physiological conditions. After the Nobel Prize in Physiology or Medicine 2016 was awarded to Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy", there was an explosion in the field of autophagy and molecular biologists started to pay considerable attention to the mechanistic insights related to autophagy in different diseases. Since autophagy behaved dualistically, both as a cell death and a cell survival mechanism, it opened new horizons for a deeper analysis of cell type and context dependent behavior of autophagy in different types of cancers. There are numerous studies showing that the induction of autophagy mechanism will promote survival of cancer cells. Since autophagy is mainly a mechanism to keep the cells alive, it may protect breast cancer cells against stress conditions such as starvation and hypoxia. For these reasons, autophagy was noted to be instrumental in metastasis and drug resistance. In this chapter we have emphasized on role of role of autophagy in breast cancer. Additionally we have partitioned this chapter into exciting role of microRNAs in modulation of autophagy in breast cancer. We have also comprehensively summarized how TRAIL-mediated signaling and autophagy operated in breast cancer cells.


Assuntos
Autofagia , Neoplasias da Mama/patologia , MicroRNAs/genética , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Progressão da Doença , Humanos
11.
J Cell Biochem ; 119(12): 9640-9644, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076759

RESUMO

Research over the decades has sequentially and systematically provided a near-complete resolution of multifaceted and therapeutically challenging nature of cancer. Drug discovery from plants has enjoyed a renaissance in the past few years. Natural products have provided many of the lead structures, which are currently being used as templates for the design and synthesis of novel compounds with biologically enhanced properties. With the maturity and diversification of technologies, there is a growing need to design high-throughput functional assays for the evaluation of the myriad of compounds being catalogued. This review sheds light on the tumor suppressive properties of Solanum nigrum and its bioactive ingredients. Several worthy of mention include uttroside B, solanine, solamargine, and physalins, which have been tested for efficacy in cancer cell lines and xenografted mice. We have summarized the most recent findings related to S. nigrum-mediated regulation of intracellular protein network in different cancers. α-Solanine, an active component of S. nigrum, is involved in the regulation of microRNA-21 (miRNA-21) (oncogenic) and miRNA-138 (tumor suppressor) in prostate cancer. However, this is the only available evidence that gives us a clue related to the tumor suppressive effects exerted by components of S. nigrum at a posttranscriptional level. More interestingly, S. nigrum and its components exerted inhibitory effects on different pathways including PI3K/AKT, JAK-STAT, VEGF/VEGFR, and matrix metalloproteinases in different cancers. We also provide an overview of new tools, methodologies, and approaches, which will allow researchers to extract as much information as possible out of the tremendous data sets currently being generated. The use of computational tools will be helpful in processing structurally complex natural products and also in prediction of their macromolecular targets.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Oncogênicas/metabolismo , Solanum nigrum/química , Animais , Antineoplásicos Fitogênicos/química , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , MicroRNAs , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Solanina/farmacologia
12.
Arch Immunol Ther Exp (Warsz) ; 64(3): 217-23, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846602

RESUMO

It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.


Assuntos
Células-Tronco Neoplásicas/citologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , Apoptose , Biomarcadores Tumorais/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
13.
Asian Pac J Cancer Prev ; 16(4): 1671-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25743849

RESUMO

Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition of the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Bortezomib/uso terapêutico , Neoplasias/prevenção & controle , Complexo de Endopeptidases do Proteassoma/química , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Asian Pac J Cancer Prev ; 15(16): 6485-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25169474

RESUMO

Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Autofagia/fisiologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Ativação Enzimática , Humanos , Camundongos , Transplante de Neoplasias , Estresse Oxidativo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA