Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 116701, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001099

RESUMO

We provide strong evidence of the spin-nematic state in a paradigmatic ferro-antiferromagnetic J_{1}-J_{2} model using analytical and density-matrix renormalization group methods. In zero field, the attraction of spin-flip pairs leads to a first-order transition and no nematic state, while pair repulsion at larger J_{2} stabilizes the nematic phase in a narrow region near the pair-condensation field. A devil's staircase of multipair condensates is conjectured for weak pair attraction. A suppression of the spin-flip gap by many-body effects leads to an order-of-magnitude contraction of the nematic phase compared to naïve expectations. The proposed phase diagram should be broadly valid.

2.
Phys Rev Lett ; 121(5): 057601, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118285

RESUMO

The ultimate goal of multiferroic research is the development of a new-generation nonvolatile memory devices, where magnetic bits are controlled via electric fields with low energy consumption. Here, we demonstrate the optical identification of magnetoelectric (ME) antiferromagnetic (AFM) domains in the LiCoPO_{4} exploiting the strong absorption difference between the domains. This unusual contrast, also present in zero magnetic field, is attributed to the dynamic ME effect of the spin-wave excitations, as confirmed by our microscopic model, which also captures the characteristics of the observed static ME effect. The control and the optical readout of AFM/ME domains, demonstrated here, will likely promote the development of ME and spintronic devices based on AFM insulators.

3.
Phys Rev Lett ; 118(21): 217202, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598662

RESUMO

We formulate and study a spin-orbital model for a family of cubic double perovskites with d^{1} ions occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis reveal a rich variety of phases emerging from the interplay of Hund's rule and spin-orbit coupling. The phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical origin of the unusual amorphous valence bond state experimentally suggested for Ba_{2}BMoO_{6} (B=Y, Lu) and predicts possible ordered patterns in Ba_{2}BOsO_{6} (B=Na, Li) compounds.

4.
Nat Commun ; 6: 6805, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865559

RESUMO

SrCu2(BO3)2 is the archetypal quantum magnet with a gapped dimer-singlet ground state and triplon excitations. It serves as an excellent realization of the Shastry-Sutherland model, up to small anisotropies arising from Dzyaloshinskii-Moriya interactions. Here we demonstrate that these anisotropies, in fact, give rise to topological character in the triplon band structure. The triplons form a new kind of Dirac cone with three bands touching at a single point, a spin-1 generalization of graphene. An applied magnetic field opens band gaps resulting in topological bands with Chern numbers ±2. SrCu2(BO3)2 thus provides a magnetic analogue of the integer quantum Hall effect and supports topologically protected edge modes. At a threshold value of the magnetic field set by the Dzyaloshinskii-Moriya interactions, the three triplon bands touch once again in a spin-1 Dirac cone, and lose their topological character. We predict a strong thermal Hall signature in the topological regime.

5.
Nat Commun ; 6: 7306, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105992

RESUMO

A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA