Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 60: 353-369, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31348869

RESUMO

The most common applications of artificial intelligence (AI) in drug treatment have to do with matching patients to their optimal drug or combination of drugs, predicting drug-target or drug-drug interactions, and optimizing treatment protocols. This review outlines some of the recently developed AI methods aiding the drug treatment and administration process. Selection of the best drug(s) for a patient typically requires the integration of patient data, such as genetics or proteomics, with drug data, like compound chemical descriptors, to score the therapeutic efficacy of drugs. The prediction of drug interactions often relies on similarity metrics, assuming that drugs with similar structures or targets will have comparable behavior or may interfere with each other. Optimizing the dosage schedule for administration of drugs is performed using mathematical models to interpret pharmacokinetic and pharmacodynamic data. The recently developed and powerful models for each of these tasks are addressed, explained, and analyzed here.


Assuntos
Inteligência Artificial , Modelos Teóricos , Preparações Farmacêuticas/administração & dosagem , Esquema de Medicação , Interações Medicamentosas , Humanos , Preparações Farmacêuticas/química , Medicina de Precisão
2.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858918

RESUMO

A significant percentage of Duchenne muscular dystrophy (DMD) cases are caused by premature termination codon (PTC) mutations in the dystrophin gene, leading to the production of a truncated, non-functional dystrophin polypeptide. PTC-suppressing compounds (PTCSC) have been developed in order to restore protein translation by allowing the incorporation of an amino acid in place of a stop codon. However, limitations exist in terms of efficacy and toxicity. To identify new compounds that have PTC-suppressing ability, we selected and clustered existing PTCSC, allowing for the construction of a common pharmacophore model. Machine learning (ML) and deep learning (DL) models were developed for prediction of new PTCSC based on known compounds. We conducted a search of the NCI compounds database using the pharmacophore-based model and a search of the DrugBank database using pharmacophore-based, ML and DL models. Sixteen drug compounds were selected as a consensus of pharmacophore-based, ML, and DL searches. Our results suggest notable correspondence of the pharmacophore-based, ML, and DL models in prediction of new PTC-suppressing compounds.


Assuntos
Códon de Terminação , Bases de Dados de Compostos Químicos , Distrofina , Aprendizado de Máquina , Distrofia Muscular de Duchenne , Distrofina/biossíntese , Distrofina/genética , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
3.
Metabolomics ; 15(7): 94, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222577

RESUMO

INTRODUCTION: Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and biopsy. This process is expensive, unpleasant, and may have severe side effects. Recent growth in the power and accessibility of machine-learning software has allowed for the development of new, non-invasive diagnostic methods whose accuracy and sensitivity are uncompromising to function. OBJECTIVES: The goal of this research was to elucidate the biomarkers including metabolites and corresponding genes for different stages of BCa, show their distinguishing and common features, and create a machine-learning model for classification of stages of BCa. METHODS: Sets of metabolites for early and late stages, as well as common for both stages were analyzed using MetaboAnalyst and Ingenuity® Pathway Analysis (IPA®) software. Machine-learning methods were utilized in the development of a binary classifier for early- and late-stage metabolites of BCa. Metabolites were quantitatively characterized using EDragon 1.0 software. The two modeling methods used are Multilayer Perceptron (MLP) and Stochastic Gradient Descent (SGD) with a logistic regression loss function. RESULTS: We explored metabolic pathways related to early-stage BCa (Galactose metabolism and Starch and sucrose metabolism) and to late-stage BCa (Glycine, serine, and threonine metabolism, Arginine and proline metabolism, Glycerophospholipid metabolism, and Galactose metabolism) as well as those common to both stages pathways. The central metabolite impacting the most cancerogenic genes (AKT, EGFR, MAPK3) in early stage is D-glucose, while late-stage BCa is characterized by significant fold changes in several metabolites: glycerol, choline, 13(S)-hydroxyoctadecadienoic acid, 2'-fucosyllactose. Insulin was also seen to play an important role in late stages of BCa. The best performing model was able to predict metabolite class with an accuracy of 82.54% and the area under precision-recall curve (PRC) of 0.84 on the training set. The same model was applied to three separate sets of metabolites obtained from public sources, one set of the late-stage metabolites and two sets of the early-stage metabolites. The model was better at predicting early-stage metabolites with accuracies of 72% (18/25) and 95% (19/20) on the early sets, and an accuracy of 65.45% (36/55) on the late-stage metabolite set. CONCLUSION: By examining the biomarkers present in the urine samples of BCa patients as compared with normal patients, the biomarkers associated with this cancer can be pinpointed and lead to the elucidation of affected metabolic pathways that are specific to different stages of cancer. Development of machine-learning model including metabolites and their chemical descriptors made it possible to achieve considerable accuracy of prediction of stages of BCa.


Assuntos
Aprendizado de Máquina , Neoplasias da Bexiga Urinária/patologia , Aminoácidos/metabolismo , Área Sob a Curva , Biomarcadores Tumorais/urina , Receptores ErbB/metabolismo , Galactose/metabolismo , Glicina/metabolismo , Humanos , Insulina/metabolismo , Redes e Vias Metabólicas/genética , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , Curva ROC , Software , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA