Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 11073-11077, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529757

RESUMO

Fullerene C60 is a ubiquitous material for application in organic electronics and nanotechnology, due to its desirable optoelectronic properties including good molecular orbital alignment with electron-rich donor materials, as well as high and isotropic charge carrier mobility. However, C60 possesses two limitations that hinder its integration into large-scale devices: (1) poor solubility in common organic solvents leading to expensive device processing, and (2) poor optical absorbance in the visible portion of the spectrum. Covalent functionalization has long been the standard for introducing structural tunability into molecular design, but non-covalent interactions have emerged as an alternative strategy to tailor C60-based materials, offering a versatile and tuneable alternative to novel functional materials and applications. In this work, we report a straightforward non-covalent functionalization of C60 with a branched polyethylene (BPE), which occurs spontaneously in dilute chloroform solution under ambient conditions. A detailed characterization strategy, based on UV-vis spectroscopy and size-exclusion chromatography was performed to verify and investigate the structure of the C60+BPE complex. Among others, our work reveals that the supramolecular complex has an order of magnitude higher molecular weight than its C60 and BPE constituents and points towards oxidation as the driving force behind complexation. The C60+BPE complex also possesses significantly broadened optical absorbance compared to unfunctionalized C60, extending further into the visible portion of the spectrum. This non-covalent approach presents an inexpensive route to address the shortcomings of C60 for electronic applications, situating the C60+BPE complex as a promising candidate for further investigation in organic electronic devices.

2.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733050

RESUMO

Gait phase monitoring wearable sensors play a crucial role in assessing both health and athletic performance, offering valuable insights into an individual's gait pattern. In this study, we introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a micropatterned polydimethylsiloxane dielectric layer placed between screen-printed silver electrodes. The sensor demonstrated inherent stretchability and durability, even when the electrode was bent at a 45-degree angle, it maintained an electrode resistance of approximately 3 Ω. This feature is particularly advantageous for gait monitoring applications. Furthermore, the fabricated flexible capacitive pressure sensor exhibited higher sensitivity and linearity at both low and high pressure and displayed very good stability. Notably, the sensors demonstrated rapid response and recovery times for both under low and high pressure. To further explore the capabilities of these new sensors, they were successfully tested as insole-type pressure sensors for real-time gait signal monitoring. The sensors displayed a well-balanced combination of sensitivity and response time, making them well-suited for gait analysis. Beyond gait analysis, the proposed sensor holds the potential for a wide range of applications within biomedical, sports, and commercial systems where soft and conformable sensors are preferred.


Assuntos
Marcha , Pressão , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Marcha/fisiologia , Tecnologia sem Fio/instrumentação , Análise da Marcha/métodos , Análise da Marcha/instrumentação , Eletrodos , Sapatos , Desenho de Equipamento
3.
Langmuir ; 39(35): 12283-12291, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611231

RESUMO

Gels of semiconducting polymers have many potential applications, including biomedical devices and sensors. Here, we report a self-assembled gel system consisting of isoindigo-based semiconducting polymers with galactose side chains in benign, alcohol-based solvents. Because of the carbohydrate side chains, the modified isoindigo polymers are soluble in alcohols. We obtained thermoreversible gels in 1-propanol using these polymers and di-Fmoc-l-lysine, a molecular gelator. The polymers and molecular gelators have been selected in such a way that they do not have significant physical interactions. The molecular gelator self-assembled to form a fibrous structure that confines the polymer chains in the interstitial spaces of the fibers. The polymer chains formed local aggregations and increased the shear moduli of the gels significantly. Bulky galactose side chains and the less planar nature of the polymer backbone hindered the formation of long-range assembled structures of the polymers. However, the dispersion of polymers throughout the gel samples resulted in a percolated structure in the dried gel films. The bulk electrical conductivity of dried gels confirmed the presence of such percolated structures. Our results demonstrated that carbohydrate-containing conjugated polymers can be combined with molecular gelators to obtain gels in eco-friendly solvents.

4.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139627

RESUMO

Human-robot interaction is of the utmost importance as it enables seamless collaboration and communication between humans and robots, leading to enhanced productivity and efficiency. It involves gathering data from humans, transmitting the data to a robot for execution, and providing feedback to the human. To perform complex tasks, such as robotic grasping and manipulation, which require both human intelligence and robotic capabilities, effective interaction modes are required. To address this issue, we use a wearable glove to collect relevant data from a human demonstrator for improved human-robot interaction. Accelerometer, pressure, and flexi sensors were embedded in the wearable glove to measure motion and force information for handling objects of different sizes, materials, and conditions. A machine learning algorithm is proposed to recognize grasp orientation and position, based on the multi-sensor fusion method.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Robótica/métodos , Algoritmos , Força da Mão , Aprendizado de Máquina
5.
Sensors (Basel) ; 23(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37631688

RESUMO

This study presents graphene inks produced through the liquid-phase exfoliation of graphene flakes in water using optimized concentrations of dispersants (gelatin, triton X-100, and tween-20). The study explores and compares the effectiveness of the three different dispersants in creating stable and conductive inks. These inks can be printed onto polyethylene terephthalate (PET) substrates using an aerosol jet printer. The investigation aims to identify the most suitable dispersant to formulate a high-quality graphene ink for potential applications in printed electronics, particularly in developing chemiresistive sensors for IoT applications. Our findings indicate that triton X-100 is the most effective dispersant for formulating graphene ink (GTr), which demonstrated electrical conductivity (4.5 S·cm-1), a high nanofiller concentration of graphene flakes (12.2%) with a size smaller than 200 nm (<200 nm), a low dispersant-to-graphene ratio (5%), good quality as measured by Raman spectroscopy (ID/IG ≈ 0.27), and good wettability (θ ≈ 42°) over PET. The GTr's ecological benefits, combined with its excellent printability and good conductivity, make it an ideal candidate for manufacturing chemiresistive sensors that can be used for Internet of Things (IoT) healthcare and environmental applications.

6.
Langmuir ; 38(36): 10943-10952, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36048746

RESUMO

Incorporation of directing amide groups has been shown to facilitate the topochemical polymerization of 1,3-butadiyne (diacetylene) groups in noncrystalline phases such as gels, amorphous solids, and liquid crystals. It remains challenging to polymerize 1,3-butadiyne-containing alkylthiolate ligands within their self-assembled monolayers on gold nanoparticles (AuNPs), which enhances their stability and adds new optical and electronic properties. Especially smaller AuNPs of sizes below 5 nm in diameter have been reported to display sluggish photopolymerization and are susceptible to photodegradation under UV irradiation. To probe the effectiveness of the amide-directed photopolymerization of 1,3-butadiyne ligands, small AuNPs in the 2-4 nm range were synthesized that contain alkylthiolate ligands with and without amide and 1,3-butadiyne groups. Their photopolymerization and photostability were studied by transmission electron microscopy (TEM), UV-vis spectroscopy, and Raman spectroscopy. AuNP with amide-free 1,3-butadiyne ligands templated the polymerization of the 1,3-butadiyne ligands but fused to large and insoluble particles during the polymerization process. AuNPs with ligands containing both 1,3-butadiyne and amide groups polymerized significantly faster, which slowed down photodegradation. A UV irradiation (254 nm and 176 W/m2) for 5-10 min was found to be optimal for the AuNPs with directing amide groups studied here, although their average core sizes grew from 3.8 to 4.0 nm in diameter and about 20% of the attached 1,3-butadiyne ligands remained unreacted after 10 minutes of irradiation. About 75% of the attached 1,3-butadiyne ligands were already polymerized during the first 5 min of UV irradiation. This decrease in reactivity is reasoned with a fast polymerization of ligands attached to facet sites and slower polymerization rates for ligands attached to edge and corner sites. Unexpectedly, photopolymerization occurred only in the presence of solvent, whereas no polydiacetylene was generated when dry powders of any of the diacetylene-containing gold nanoparticles were irradiated.

7.
Nature ; 539(7629): 411-415, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853213

RESUMO

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.


Assuntos
Materiais Biomiméticos/química , Biomimética , Polímeros/química , Transistores Eletrônicos , Humanos , Maleabilidade , Pele , Estresse Mecânico , Cicatrização
8.
Langmuir ; 35(47): 15158-15167, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31682125

RESUMO

Polydiacetylenes are well-established one-dimensional organic semiconductors that have been generated by photochemical and thermal polymerizations of diacetylenes in single crystals, gel phases, thin films, and membranes. Their formation in mesophases, such as liquid crystals, has been surprisingly little studied although higher-ordered mesophases should support the topochemical polymerization of diacetylenes (1,3-butadiyne groups) and may give access to large domains of uniformly aligned materials. The polymerization of diacetylenes in a mesophase may also increase the stability of the self-assembled supramolecular structure. Here, the dye and discotic mesogen tetraazaporphyrin was decorated with eight diacetylene-containing alkyl chains to probe its mesomorphism and conversion into multifunctional polydiacetylene materials. While the incorporation of diacetylene groups supports columnar mesomorphism, successful photopolymerization required the presence of directing amide groups that suppressed columnar in favor of nematic mesomorphism. Still, the polymerization of the nematic mesophase generated a soluble nematic polydiacetylene of significantly higher molecular weight (Mn = 77 kDa or 25 monomer units by gel permeation chromatography) than what has been obtained in gel phases of related compounds. The formation of polydiacetylene was confirmed by Raman spectroscopy, and its nematic structure was verified by UV-vis spectroscopy, polarized optical microscopy, and X-ray diffraction. Both its nematic structure and the incorporation of eight side chains per discotic unit provide the polydiacetylene with sufficient solubility for casting thin films on substrates. Atomic force microscopy studies of films on silicon wafers revealed a grid-like structure of connected nanofibers. This study demonstrates the requirements for the formation of multifunctional mesomorphic polydiacetylene materials from mesomorphic precursors and their advantages. Optimization of the presented molecular design should give access to other mesophases and, consequently, functional polydiacetylene materials with tunable structures and optoelectronic properties.

9.
Chem Rec ; 19(6): 1008-1027, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30511820

RESUMO

Organic bulk heterojunction solar cells are promising candidates as future photovoltaic technologies for large-scale and low-cost energy production. It is, therefore, not surprising that research on the design and preparation of these types of organic photovoltaics has attracted a lot of attention since the last two decades, leading to constantly growing values of energy conversion and efficiency. Combined with the possibility of a large-scale production via roll-to-roll printing techniques, bulk heterojunction solar cells enable the fabrication of conformable, light-weight and flexible light-harvesting devices for point-of-use applications. This perspective review will highlight the recent advances toward mechanically robust and intrinsically stretchable bulk heterojunction solar cells. Mechanically robust fullerene-based and all-polymer devices will be presented, as well as a comprehensive overview of the recent challenges and characterization techniques recently developed to overcome some of the challenges of this research area, which is still in its infancy.

10.
Soft Matter ; 15(38): 7654-7662, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31486472

RESUMO

In this work, a facile and simple yet effective method to generate intrinsic autonomous self-healing polymers was developed, leading to new materials that can be easily fine-tuned both mechanically and chemically. The new materials were designed to incorporate two dynamic and reversible types of chemical bonds, namely dynamic imine and metal-coordinating bonds, to enable autonomous self-healing, controlled degradability and ultra-high tunable stretchability (up to 800% strain) based on the ratio of metal to ligand incorporated. Through an easy condensation reaction, imine bonds are generated at the end-termini of a short siloxane chain. The new dynamic system was characterized by a variety of techniques, including tensile-pull strain testing, atomic force microscopy and UV-Vis spectroscopy, which showed that the highly dynamic imine bonds, combined with coordination with Fe2+ ions, allow for the material to regenerate 88% of its mechanical strength after physical damage. The materials were also controlled to be degraded in mild acidic conditions. Lastly, application in self-healable electronics was demonstrated through the fabrication of a capacitive-based pressure sensor, which shows good sensitivity and dynamic response (∼0.33 kPa-1) before and after healing.

11.
Langmuir ; 34(40): 12126-12136, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208712

RESUMO

A new strategy toward functional materials with novel properties and well-defined structures has been developed through the topochemical polymerization of diacetylene-containing diketopyrrolopyrrole (DPP) derivatives. In order to enable the efficient photopolymerization and cross-linking of the materials, a rational design of DPP-based derivatives has been performed to incorporate amide moieties, thus enabling the formation of intermolecular hydrogen bonds and the formation of an organogel. The new materials showed good gelation properties in aromatic solvents, resulting in the formation of a dense fibrous network in the gel state. Upon UV irradiation, the supramolecular self-assemblies obtained were shown to be efficiently cross-linked through the conversion of diacetylene into polydiacetylene. A detailed investigation of new resulting materials was performed by a combination of morphological characterization tools, including X-ray diffraction, Raman spectroscopy, and atomic force microscopy. Our results demonstrate that the topochemical polymerization of diacetylene-containing DPP-based compounds is a promising strategy toward new electroactive and well-defined materials, without the use of catalysts or additives, thus creating new opportunities for the preparation and processing of π-conjugated materials.

12.
Macromol Rapid Commun ; 39(14): e1800092, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749111

RESUMO

The understanding of the structure-mechanical property relationship for semiconducting polymers is essential for the application of flexible organic electronics. Herein pseudo free-standing tensile testing, a technique that measures the mechanical property of thin films floating on the surface of water, is used to obtain the stress-strain behaviors of two semiconducting polymers, poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(2-decyltetradecyl)-3,6-di(thiophen-2-yl)diketopyrrolo[3,4-c]pyrrole-1,4-dione-alt-thienovinylthiophene (DPP-TVT) donor-acceptor (D-A) polymer. To our surprise, DPP-TVT shows similar viscoelastic behavior to P3HT, despite DPP-TVT possessing a larger conjugated backbone and much higher charge carrier mobility. The viscoelastic behavior of these polymers is due to sub room temperature glass transition temperatures (Tg ), as shown by AC chip calorimetry. These results provide a comprehensive understanding of the viscoelastic properties of conjugated D-A polymers by thickness-dependent, strain rate dependent, hysteresis tests, and stress-relaxation tests, highlighting the importance of Tg for designing intrinsically stretchable conjugated polymers.


Assuntos
Polímeros/química , Pirazóis/química , Pirimidinas/química , Tiofenos/química , Vidro/química , Semicondutores , Resistência à Tração , Temperatura de Transição
13.
Chem Soc Rev ; 43(1): 85-98, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24005318

RESUMO

The preparation of carbon nanomaterials has been the focus of many research groups over the last twenty years. Traditionally, the synthesis of these materials has been accomplished using physical methods involving harsh conditions, limiting their applicability in numerous technological areas. Thus, researchers have been constantly working on developing new methods involving organic molecules possessing highly reactive functional groups that can be graphitized under mild conditions. In this tutorial review, we highlight recent approaches for the preparation of various carbon nanomaterials using physical stimuli (heat and/or light) to trigger graphitization of both non-organized and self-assembled molecular precursors. Special attention is devoted to the preparation of carbon nanomaterials from alkyne-containing molecules.

14.
Org Biomol Chem ; 12(45): 9236-42, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25302476

RESUMO

Rational design of meta-linked oligophenylbutadiynylene (OPBD) derivatives was conducted in order to gain insight into their gelation properties and reactivity toward topochemical polymerization to yield polydiacetylenes (PDAs). Different structural parameters influencing the gel formation such as the presence of peripheral 2-hydroxyethoxy side chains and the position of amide functionalities, responsible for intermolecular hydrogen bonds, were studied. Topochemical polymerization of butadiyne units contained within the OPBDs was performed and the resulting PDAs were characterized by electron microscopy and spectroscopy.

15.
Beilstein J Org Chem ; 10: 1613-1619, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161718

RESUMO

The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM).

16.
Mater Horiz ; 11(1): 196-206, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37807887

RESUMO

Modulating the segmental order in the morphology of conjugated polymers is widely recognized as a crucial factor for achieving optimal electronic properties and mechanical deformability. However, it is worth noting that the segmental order is typically associated with the crystallization process, which can result in rigid and brittle long-range ordered crystalline domains. To precisely control the morphology, a comprehensive understanding of how highly anisotropic conjugated polymers form segmentally ordered structures with ongoing crystallization is essential, yet currently elusive. To fill this knowledge gap, we developed a novel approach with a combination of stage-type fast scanning calorimetry and micro-Raman spectroscopy to capture the series of specimens with a continuum in the polymer percent crystallinity and detect the segmental order in real-time. Through the investigation of conjugated polymers with different backbones and side-chain structures, we observed a generally existing phenomenon that the degree of segmental order saturates before the maximum crystallinity is achieved. This disparity allows the conjugated polymers to achieve good charge carrier mobility while retaining good segmental dynamic mobility through the tailored treatment. Moreover, the crystallization temperature to obtain optimal segmental order can be predicted based on Tg and Tm of conjugated polymers. This in-depth characterization study provides fundamental insights into the evolution of segmental order during crystallization, which can aid in designing and controlling the optoelectronic and mechanical properties of conjugated polymers.

17.
J Am Chem Soc ; 135(1): 110-3, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23249259

RESUMO

Soluble organic nanorods were prepared from phenylacetylene macrocycles using the topochemical polymerization of butadiyne moieties placed both inside and outside the macrocycles' skeletons. Macrocycles containing amide groups were self-assembled in a columnar fashion through the formation of an organogel in ethyl acetate. Upon irradiation with UV light, the Raman signals associated with butadiyne units completely vanished, indicating the creation of covalently linked nanorods.


Assuntos
Acetileno/análogos & derivados , Compostos Macrocíclicos/síntese química , Nanotubos/química , Acetileno/síntese química , Acetileno/química , Compostos Macrocíclicos/química , Estrutura Molecular , Polimerização
18.
Langmuir ; 29(10): 3446-52, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23418956

RESUMO

A star-shaped molecule with three butadiyne moieties attached to a central phenyl core was self-assembled via organogel formation in different solvents and subjected to UV irradiation in its xerogels form to give a soluble conjugated 1D nanowire made of three connected polydiacetylene (PDA) chains. The resulting polymer has a slightly lower optical band gap than its linear counterpart and presents no chromism property, indicative of the rigid nature of the polymer thus obtained.

19.
ACS Appl Mater Interfaces ; 15(37): 43880-43886, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671912

RESUMO

Formic acid (FA) is an important C1-containing feedstock that serves as a masked source of dihydrogen gas (H2). To encourage the adoption of cleaner (noncarbonaceous) energy sources, FA detection and sensing is thus of considerable interest. Here, we examine the use of a commercially available dye, azomethine-H (Az-H), for FA sensing. Solution studies confirm that FA quenches both the absorbance and the luminescence properties of Az-H. FA was additionally found to attenuate a known Az-H (E)-to-(Z) conformational change, suggesting an Az-H/FA interaction, possibly through hydrogen bonding; this phenomenon was probed using 1H NMR spectroscopy. Moving toward a solid-state sensor, the Az-H probe was incorporated into a gelatin-based matrix. On exposure to FA, the luminescence of this system was found to increase in a FA-dependent manner, attributed to the formation of stable hydrogen-bonded structures, facilitating a (Z)-to-(E) isomerization via imine protonation, allowing for production of the more luminescent (E)-isomer. This fluorogenic signal was used as a FA sensor with an estimated detection limit of ca. 0.4 ppb FA vapor. This work constitutes an important step toward a highly sensitive FA sensor in both the solution and solid state, opening new space for the detection of organic acids in differing chemical environments.

20.
Adv Mater ; 35(41): e2302178, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37318244

RESUMO

Tuning the optoelectronic properties of donor-acceptor conjugated polymers (D-A CPs) is of great importance in designing various organic optoelectronic devices. However, there remains a critical challenge in precise control of bandgap through synthetic approach, since the chain conformation also affects molecular orbital energy levels. Here, D-A CPs with different acceptor units are explored that show an opposite trend in energy band gaps with the increasing length of oligothiophene donor units. By investigating their chain conformation and molecular orbital energy, it is found that the molecular orbital energy alignment between donor and acceptor units plays a crucial role in dictating the final optical bandgap of D-A CPs. For polymers with staggered orbital energy alignment, the higher HOMO with increasing oligothiophene length leads to a narrowing of the optical bandgap despite decreased chain rigidity. On the other hand, for polymers with sandwiched orbital energy alignment, the increased band gap with increasing oligothiophene length originates from the reduction of bandwidth due to more localized charge density distribution. Thus, this work provides a molecular understanding of the role of backbone building blocks on the chain conformation and bandgaps of D-A CPs for organic optoelectronic devices through the conformation design and segment orbital energy alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA