Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 57(3): 467-78, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25620559

RESUMO

As an essential organelle in the cell, the lysosome is responsible for digestion and recycling of intracellular components, storage of nutrients, and pH homeostasis. The lysosome is enclosed by a special membrane to maintain its integrity, and nutrients are transported across the membrane by numerous transporters. Despite their importance in maintaining nutrient homeostasis and regulating signaling pathways, little is known about how lysosomal membrane protein lifetimes are regulated. We identified a yeast vacuolar amino acid transporter, Ypq1, that is selectively sorted and degraded in the vacuolar lumen following lysine withdrawal. This selective degradation process requires a vacuole anchored ubiquitin ligase (VAcUL-1) complex composed of Rsp5 and Ssh4. We propose that after ubiquitination, Ypq1 is selectively sorted into an intermediate compartment. The ESCRT machinery is then recruited to sort the ubiquitinated Ypq1 into intraluminal vesicles (ILVs). Finally, the compartment fuses with the vacuole and delivers ILVs into the lumen for degradation.


Assuntos
Lisossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
2.
Biochem Biophys Res Commun ; 631: 115-123, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36183552

RESUMO

Some traditional Chinese medicines exert roles in the therapy of liver diseases by modulating autophagy. Bifendate (DDB), a synthetic intermediate of Schisandrin C extracted from Schisandrae chinensis, is clinically used to treat hepatitis in China. While DDB is a positive control to research some potential hepatoprotective agents, its related molecular mechanisms are unknown. In this study, we show that DDB inhibited autophagosome-lysosome fusion, lysosome acidification and autophagic lysosome reformation. Moreover, DDB attenuated oleic acid-induced lipid droplet accumulation. These findings reveal the effects of DDB on the autophagy-related processes and lysosomal function, and also provide a possibility to understand the bioactivity mechanism of DDB in the future.


Assuntos
Hidrocarbonetos Clorados , Ácido Oleico , Autofagia , Compostos de Bifenilo , Hidrocarbonetos Clorados/farmacologia , Lisossomos , Ácido Oleico/farmacologia
3.
Clin Infect Dis ; 72(9): e240-e248, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697835

RESUMO

BACKGROUND: Recent studies have indicated that females with coronavirus disease 2019 (COVID-19) have a lower morbidity, severe case rate, and mortality and better outcome than those of male individuals. However, the reasons remained to be addressed. METHODS: To find the factors that potentially protect females from COVID-19, we recruited all confirmed patients hospitalized at 3 branches of Tongji Hospital (N = 1902), and analyzed the correlation between menstrual status (n = 509, including 68 from Mobile Cabin Hospital), female hormones (n = 78), and cytokines related to immunity and inflammation (n = 263), and the severity/clinical outcomes in female patients <60 years of age. RESULTS: Nonmenopausal female patients had milder severity and better outcome compared with age-matched men (P < .01 for both). Menopausal patients had longer hospitalization times than nonmenopausal patients (hazard ratio [HR], 1.91 [95% confidence interval {CI}, 1.06-3.46]; P = .033). Both anti-Müllerian hormone (AMH) and estradiol (E2) showed a negative correlation with severity of infection (adjusted HR, 0.146 [95% CI, .026-.824], P = .029 and 0.304 [95% CI, .092-1.001], P = .05, respectively). E2 levels were negatively correlated with interleukin (IL) 2R, IL-6, IL-8, and tumor necrosis factor alpha in the luteal phase (P = .033, P = .048, P = .054, and P = .023) and C3 in the follicular phase (P = .030). CONCLUSIONS: Menopause is an independent risk factor for female COVID-19 patients. AMH and E2 are potential protective factors, negatively correlated with COVID-19 severity, among which E2 is attributed to its regulation of cytokines related to immunity and inflammation.


Assuntos
COVID-19 , SARS-CoV-2 , China/epidemiologia , Estudos Transversais , Feminino , Hormônios Esteroides Gonadais , Humanos , Masculino , Estudos Retrospectivos
4.
Nature ; 520(7548): 563-6, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25686604

RESUMO

Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagia , Endossomos/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Fagossomos/metabolismo , Proteínas Relacionadas à Autofagia , Células HEK293 , Células HeLa , Humanos , Fagossomos/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo
5.
Adv Exp Med Biol ; 1208: 175-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260027

RESUMO

Macroautophagy (referred to as autophagy hereafter) is a highly conserved catabolic process in eukaryotic cells. Autophagy is essential for cellular homeostasis through elimination and recycling of large cytoplasmic components, such as abnormal protein aggregates and damaged organelles, via lysosomal degradation. Since being originally identified by genetic screening in yeast, autophagy-related (ATG) genes have played a central role in autophagy research in different organisms, including plants, worms, flies, and mammals. Mouse models for monitoring autophagic activity or clarifying its biological functions have also been established. These mice are powerful tools to investigate roles of autophagy in vivo. Owing to the rapid technological advances in molecular biology, it is ever more efficient and simpler to manipulate autophagy-associated genes. Herein, we will introduce some commonly used approaches of gene silencing in mammalian cells, including CRIPSR/Cas9-mediated gene knockout and siRNA- and shRNA-mediated gene knockdown. We also summarized the common mouse models used for assessing autophagy. We hope to bring the researchers some useful information as they study autophagy.


Assuntos
Autofagia , Lisossomos , Animais , Autofagia/genética , Mamíferos , Camundongos , Proteínas , Saccharomyces cerevisiae
6.
Cell Mol Life Sci ; 75(5): 815-831, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28939950

RESUMO

Autophagy is a highly regulated process in eukaryotes to maintain homeostasis and manage stress responses. Understanding the regulatory mechanisms and key players involved in autophagy will provide critical insights into disease-related pathogenesis and potential clinical treatments. In this review, we describe the hallmark events involved in autophagy, from its initiation, to the final destruction of engulfed targets. Furthermore, based on structural and biochemical data, we evaluate the roles of key players in these processes and provide rationale as to how they control autophagic events in a highly ordered manner.


Assuntos
Autofagia/fisiologia , Animais , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Fusão de Membrana , Modelos Biológicos , Fagossomos/metabolismo , Fagossomos/fisiologia , Ligação Proteica
7.
Nature ; 465(7300): 942-6, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20526321

RESUMO

Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are catabolized. During starvation, the protein TOR (target of rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes, which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of the autophagosome cargo in autolysosomes, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly understood. Here we show that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation. Reactivation of mTOR is autophagy-dependent and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell-a process we identify in multiple animal species. Thus, an evolutionarily conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.


Assuntos
Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Fenômenos Fisiológicos da Nutrição , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Células HeLa , Homeostase/fisiologia , Humanos , Lisossomos/ultraestrutura , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR , Células Vero
9.
Proc Natl Acad Sci U S A ; 108(19): 7826-31, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518918

RESUMO

Autophagy is a conserved cellular process to degrade and recycle cytoplasmic components. During autophagy, lysosomes fuse with an autophagosome to form an autolysosome. Sequestered components are degraded by lysosomal hydrolases and presumably released into the cytosol by lysosomal efflux permeases. Following starvation-induced autophagy, lysosome homeostasis is restored by autophagic lysosome reformation (ALR) requiring activation of the "target of rapamycin" (TOR) kinase. Spinster (Spin) encodes a putative lysosomal efflux permease with the hallmarks of a sugar transporter. Drosophila spin mutants accumulate lysosomal carbohydrates and enlarged lysosomes. Here we show that defects in spin lead to the accumulation of enlarged autolysosomes. We find that spin is essential for mTOR reactivation and lysosome reformation following prolonged starvation. Further, we demonstrate that the sugar transporter activity of Spin is essential for ALR.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Metabolismo dos Carboidratos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Mutação , Interferência de RNA , Ratos , Homologia de Sequência de Aminoácidos
10.
Cell Insight ; 3(2): 100152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435435

RESUMO

Autophagy, a lysosome-dependent degradation process, plays a crucial role in maintaining cell homeostasis. It serves as a vital mechanism for adapting to stress and ensuring intracellular quality control. Autophagy deficiencies or defects are linked to numerous human disorders, especially those associated with neuronal degeneration or metabolic diseases. Yoshinori Ohsumi was honored with the Nobel Prize in Physiology or Medicine in 2016 for his groundbreaking discoveries regarding autophagy mechanisms. Over the past few decades, autophagy research has predominantly concentrated on the early stages of autophagy, with relatively limited attention given to the late stages. Nevertheless, recent studies have witnessed substantial advancements in understanding the molecular intricacies of the late stages, which follows autophagosome formation. This review provides a comprehensive summary of the recent progresses in comprehending the molecular mechanisms of the late stages of autophagy.

11.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38323995

RESUMO

In autophagy, autophagosomes deliver the lumenal contents to lysosomes for degradation via autophagosome-lysosome fusion. In contrast, autophagosome outer membrane components were recycled via autophagosomal components recycling (ACR), which is mediated by the recycler complex. The recycler complex, composed of SNX4, SNX5, and SNX17, cooperate with the dynein-dynactin complex to mediate ACR. However, how ACR is regulated remains unknown. Here, we found that Rab32 family proteins localize to autolysosomes and are required for ACR, rather than other autophagosomal or lysosomal Rab proteins. The GTPase activity of Rab32 family proteins, governed by their guanine nucleotide exchange factor and GTPase-activating protein, plays a key role in regulating ACR. This regulation occurs through the control of recycler complex formation, as well as the connection between the recycler-cargo and dynactin complex. Together, our study reveals an unidentified Rab32 family-dependent regulatory mechanism for ACR.


Assuntos
Autofagossomos , Dineínas , Proteínas Ativadoras de GTPase , Nexinas de Classificação , Proteínas rab de Ligação ao GTP , Humanos , Citoesqueleto de Actina/metabolismo , Autofagossomos/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Lisossomos , Proteínas rab de Ligação ao GTP/metabolismo
12.
Cell Res ; 34(2): 151-168, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182888

RESUMO

Autophagosome-lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome-lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P2 via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome-lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.


Assuntos
Autofagossomos , Lisossomos , Proteínas SNARE , Autofagia/fisiologia , Fusão de Membrana/fisiologia , Humanos
13.
Autophagy ; 19(1): 370-371, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635187

RESUMO

During macroautophagy/autophagy, autophagosomes fuse with lysosomes to form autolysosomes. After fusion, the autophagosome inner membrane and enclosed substrates are degraded and transported out of lysosomes for recycling. The lysosomal membrane components are recycled by autophagic lysosome reformation (ALR) to generate new lysosomes. However, the fate of autophagosome outer membrane components on autolysosomes remains unknown. Our recent work discovered that autophagosome outer membrane components are not degraded but are recycled through an unidentified process which we named autophagosomal components recycling (ACR). Further investigation revealed the recycler complex (SNX4-SNX5-SNX17) responsible for ACR. The discovery of ACR not only fills a missing part in autophagy, but also reveals a new recycling pathway on autolysosomes.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Membranas Intracelulares/metabolismo , Macroautofagia , Lisossomos/metabolismo , Fusão de Membrana
14.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37389864

RESUMO

Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.


Assuntos
Autofagossomos , Filaminas , Macroautofagia , Proteínas Qa-SNARE , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Fosforilação , Humanos , Proteínas Qa-SNARE/metabolismo , Filaminas/metabolismo
15.
Trends Cell Biol ; 32(11): 897-899, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840484

RESUMO

Autophagy is a multistage, intracellular process. Here, we highlight a recently identified autophagosomal components recycling (ACR) stage and the recycler complex (SNX4-SNX5-SNX17), which mediates recycling of autophagosomal outer membrane proteins on the autolysosome surface immediately following autophagosome-lysosome fusion. This discovery opens numerous research directions into the postfusion fate of autophagosomes.


Assuntos
Autofagossomos , Lisossomos , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Lisossomos/metabolismo , Fusão de Membrana , Proteínas Qa-SNARE/metabolismo
16.
Nat Cell Biol ; 24(4): 497-512, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332264

RESUMO

Autolysosomes contain components from autophagosomes and lysosomes. The contents inside the autolysosomal lumen are degraded during autophagy, while the fate of autophagosomal components on the autolysosomal membrane remains unknown. Here we report that the autophagosomal membrane components are not degraded, but recycled from autolysosomes through a process coined in this study as autophagosomal components recycling (ACR). We further identified a multiprotein complex composed of SNX4, SNX5 and SNX17 essential for ACR, which we termed 'recycler'. In this, SNX4 and SNX5 form a heterodimer that recognizes autophagosomal membrane proteins and is required for generating membrane curvature on autolysosomes, both via their BAR domains, to mediate the cargo sorting process. SNX17 interacts with both the dynein-dynactin complex and the SNX4-SNX5 dimer to facilitate the retrieval of autophagosomal membrane components. Our discovery of ACR and identification of the recycler reveal an important retrieval and recycling pathway on autolysosomes.


Assuntos
Autofagossomos , Lisossomos , Autofagossomos/metabolismo , Autofagia , Dineínas/metabolismo , Lisossomos/metabolismo , Transporte Proteico
17.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35510944

RESUMO

The stimulator of interferon genes (STING) plays a critical role in innate immunity. Emerging evidence suggests that STING is important for DNA or cGAMP-induced non-canonical autophagy, which is independent of a large part of canonical autophagy machineries. Here, we report that, in the absence of STING, energy stress-induced autophagy is upregulated rather than downregulated. Depletion of STING in Drosophila fat cells enhances basal- and starvation-induced autophagic flux. During acute exercise, STING knockout mice show increased autophagy flux, exercise endurance, and altered glucose metabolism. Mechanistically, these observations could be explained by the STING-STX17 interaction. STING physically interacts with STX17, a SNARE that is essential for autophagosome biogenesis and autophagosome-lysosome fusion. Energy crisis and TBK1-mediated phosphorylation both disrupt the STING-STX17 interaction, allow different pools of STX17 to translocate to phagophores and mature autophagosomes, and promote autophagic flux. Taken together, we demonstrate a heretofore unexpected function of STING in energy stress-induced autophagy through spatial regulation of autophagic SNARE STX17.


Assuntos
Autofagia , Metabolismo Energético , Lisossomos , Proteínas de Membrana , Proteínas Qa-SNARE , Animais , Autofagossomos/metabolismo , Drosophila , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Condicionamento Físico Animal , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
18.
Front Med (Lausanne) ; 8: 635255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816526

RESUMO

Objective: This study was intended to investigate the relationship between COVID-19 disease and ovarian function in reproductive-aged women. Methods: Female COVID-19 patients of reproductive age were recruited between January 28 and March 8, 2020 from Tongji Hospital in Wuhan. Their baseline and clinical characteristics, as well as menstrual conditions, were recorded. Differentials in ovarian reserve markers and sex hormones (including anti-Müllerian hormone [AMH], follicle-stimulating hormone [FSH], the ratio of FSH to luteinizing hormone [LH], estradiol [E2], progesterone [P], testosterone [T], and prolactin [PRL] were compared to those of healthy women who were randomly selected and individually matched for age, region, and menstrual status. Uni- and multi-variable hierarchical linear regression analyses were performed to identify risk factors associated with ovarian function in COVID-19 women. Results: Seventy eight patients agreed to be tested for serum hormone, of whom 17 (21.79%) were diagnosed as the severe group and 39 (50%) were in the basal level group. Menstrual status (P = 0.55), menstrual volumes (P = 0.066), phase of menstrual cycle (P = 0.58), and dysmenorrhea history (P = 0.12) were similar without significant differences between non-severe and severe COVID-19 women. Significant lower serum AMH level/proportion (0.19/0.28 vs. 1.12 ng/ml, P = 0.003/0.027; AMH ≤ 1.1 ng/ml: 75/70.4 vs. 49.7%, P = 0.009/0.004), higher serum T (0.38/0.39 vs. 0.22 ng/ml, P < 0.001/0.001) and PRL (25.43/24.10 vs. 12.12 ng/ml, P < 0.001/0.001) levels were observed in basal level and the all-COVID-19 group compared with healthy age-matched control. When adjusted for age, menstrual status and parity variations in multivariate hierarchical linear regression analysis, COVID-19 disease was significantly associated with serum AMH (ß = -0.191; 95% CI: -1.177-0.327; P = 0.001), T (ß = 0.411; 95% CI: 11.154-22.709; P < 0.001), and PRL (ß = 0.497; 95% CI: 10.787-20.266; P < 0.001), suggesting an independent risk factor for ovarian function, which accounted for 3.2% of the decline in AMH, 14.3% of the increase in T, and 20.7% of the increase in PRL. Conclusion: Ovarian injury, including declined ovarian reserve and reproductive endocrine disorder, can be observed in women with COVID-19. More attention should be paid to their ovarian function under this pandemic, especially regarding reproductive-aged women. Clinical Trial Number: ChiCTR2000030015.

19.
Autophagy ; 17(10): 3030-3047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33280498

RESUMO

Although genome-wide association studies have identified the gene RNF186 encoding an E3 ubiquitin-protein ligase as conferring susceptibility to ulcerative colitis, the exact function of this protein remains unclear. In the present study, we demonstrate an important role for RNF186 in macroautophagy/autophagy activation in colonic epithelial cells and intestinal homeostasis. Mechanistically, RNF186 acts as an E3 ubiquitin-protein ligase for EPHB2 and regulates the ubiquitination of EPHB2. Upon stimulation by ligand EFNB1 (ephrin B1), EPHB2 is ubiquitinated by RNF186 at Lys892, and further recruits MAP1LC3B for autophagy. Compared to control mice, rnf186-/- and ephb2-/- mice have a more severe phenotype in the DSS-induced colitis model, which is due to a defect in autophagy in colon epithelial cells. More importantly, treatment with ephrin-B1-Fc recombinant protein effectively relieves DSS-induced mouse colitis, which suggests that ephrin-B1-Fc may be a potential therapy for human inflammatory bowel diseases.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG16L1: autophagy related 16 like 1; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; CD: Crohn disease; CQ: chloroquine; Csf2: colony stimulating factor 2; Cxcl1: c-x-c motif chemokine ligand 1; DMSO: dimethyl sulfoxide; DSS: dextran sodium sulfate; EFNB1: ephrin B1; EPHB2: EPH receptor B2; EPHB3: EPH receptor B3; EPHB2K788R: lysine 788 mutated to arginine in EPHB2; EPHB2K892R: lysine 892 mutated to arginine in EPHB2; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GWAS: genome-wide association studies; HRP: horseradish peroxidase; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel diseases; Il1b: interleukin 1 beta; Il6: interleukin 6; IRGM:immunity related GTPase M; i.p.: intraperitoneally; IPP: inorganic pyrophosphatase; KD: knockdown; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NOD2: nucleotide binding oligomerization domain containing 2; PI3K: phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; RNF186: ring finger protein 186; RNF186A64T: alanine 64 mutated to threonine in RNF186; RNF186R179X: arginine 179 mutated to X in RNF186; RPS6: ribosomal protein S6; Tnf: tumor necrosis factor; SQSTM1: sequestosome 1; Ub: ubiquitin; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2H: ubiquitin conjugating enzyme E2 H; UBE2K: ubiquitin conjugating enzyme E2 K; UBE2N: ubiquitin conjugating enzyme E2 N; UC: ulcerative colitis; ULK1:unc-51 like autophagy activating kinase 1; WT: wild type.


Assuntos
Autofagia , Efrina-B1 , Ubiquitina-Proteína Ligases , Animais , Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Colo , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Homeostase , Camundongos , Receptor EphB2 , Ubiquitina-Proteína Ligases/metabolismo
20.
Autophagy ; 16(6): 1111-1129, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31448673

RESUMO

Diabetes is a recognized high-risk factor for the development of atherosclerosis, in which macroautophagy/autophagy is emerging to play essential roles. The retention of low-density lipoprotein (LDL) particles in subendothelial space following transcytosis across the endothelium is the initial step of atherosclerosis. Here, we identified that high glucose could promote atherosclerosis by stimulating transcytosis of LDL. By inhibiting AMPK-MTOR-PIK3C3 pathway, high glucose suppresses the CAV-CAVIN-LC3B-mediated autophagic degradation of CAV1; therefore, more CAV1 is accumulated in the cytosol and utilized to form more caveolae in the cell membrane and facilitates the LDL transcytosis across endothelial cells. For a proof of concept, higher levels of lipids were accumulated in the subendothelial space of umbilical venous walls from pregnant women with gestational diabetes mellitus (GDM), compared to those of pregnant women without GDM. Our results reveal that high glucose stimulates LDL transcytosis by a novel CAV1-CAVIN1-LC3B signaling-mediated autophagic degradation pathway. ABBREVIATIONS: 3-MA: 3-methyladenine; ACTB: actin beta; AMPK: AMP-activated protein kinase; Bafi: bafilomycin A1; CAV1: caveolin-1; CAVIN1: caveolae associated protein 1; CSD: the CAV1 scaffolding domain; GDM: gestational diabetes mellitus; IMD: intramembrane domain; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule- associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTOR: mechanistic target of rapamycin kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SQSTM1/p62: sequestosome 1.


Assuntos
Autofagia/genética , Caveolina 1/metabolismo , Glucose/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcitose/genética , Quinases Proteína-Quinases Ativadas por AMP , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Caveolina 1/genética , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Mutação , Gravidez , Proteínas Quinases/metabolismo , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA