Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genesis ; 60(3): e23470, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35258166

RESUMO

The loss of NHL repeat containing 2 (Nhlrc2) leads to early embryonic lethality in mice, but the exact timing is currently unknown. In this study, we determined the time of lethality for Nhlrc2 knockout (KO), C57BL/6NCrl-Nhlrc2tm1a(KOMP)Wtsi /Oulu, embryos and the in situ expression pattern of Nhlrc2 based on LacZ reporter gene expression during this period. Nhlrc2 KO preimplantation mouse embryos developed normally after in vitro fertilization. Embryonic stem (ES) cells established from KO blastocysts proliferated normally despite a complete loss of the NHLRC2 protein. Nhlrc2 KO embryos from timed matings implanted and were indistinguishable from their wildtype littermates on embryonic day (E) 6.5. On E7.5, Nhlrc2 KO embryo development was arrested, and on E8.5, only 6% of the genotyped embryos were homozygous for the Nhlrc2tm1a(KOMP)Wtsi allele. Nhlrc2 KO E8.5 embryos showed limited embryonic or extraembryonic tissue differentiation and remained at the cylinder stage. Nhlrc2 expression was ubiquitous but strongest in the epiblast/ectoderm and extraembryonic ectoderm on E6.5 and E7.5. NHLRC2 is essential for early postimplantation development, and its loss leads to failed gastrulation and amniotic folding in mice. Future studies on the evolutionarily conserved NHLRC2 will provide new insights into the molecular pathways involved in the early steps of postimplantation development.


Assuntos
Gastrulação , Camadas Germinativas , Animais , Diferenciação Celular/genética , Ectoderma , Gastrulação/genética , Camundongos , Camundongos Endogâmicos C57BL
2.
Angiogenesis ; 25(2): 259-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997404

RESUMO

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.


Assuntos
Hipertensão Pulmonar , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Fibrose , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Miócitos de Músculo Liso/patologia , Prolil Hidroxilases/metabolismo
3.
Development ; 144(24): 4704-4719, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29158444

RESUMO

Kidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of Hnf1b from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events. High-resolution ex vivo imaging combined with a membranous fluorescent reporter strategy show decreased mutant cell rearrangements during mitosis-associated cell dispersal and severe epithelial disorganization. Molecular analysis reveals downregulation of Gdnf-Ret pathway components and suggests that HNF1B acts both upstream and downstream of Ret signaling by directly regulating Gfra1 and Etv5 Subsequently, Hnf1b deletion leads to massively mispatterned ureteric tree network, defective collecting duct differentiation and disrupted tissue architecture, which leads to cystogenesis. Consistently, mRNA-seq analysis shows that the most impacted genes encode intrinsic cell-membrane components with transporter activity. Our study uncovers a fundamental and recurring role of HNF1B in epithelial organization during early ureteric bud branching and in further patterning and differentiation of the collecting duct system in mouse.


Assuntos
Polaridade Celular/genética , Fator 1-beta Nuclear de Hepatócito/genética , Túbulos Renais Coletores/embriologia , Ureter/embriologia , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética , Animais , Adesão Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 1-beta Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Fator de Transcrição PAX2/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases
4.
Development ; 144(6): 1113-1117, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219945

RESUMO

Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system.


Assuntos
Rim/embriologia , Microscopia Confocal/métodos , Organoides/embriologia , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Imageamento Tridimensional , Camundongos , Morfogênese
5.
Int J Cancer ; 145(8): 2070-2081, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30809794

RESUMO

Strong inherited predisposition to breast cancer is estimated to cause about 5-10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene-edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de-regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over-represented in breast tumors with somatically inactivated MCPH1.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Aberrações Cromossômicas , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença/genética , Transcriptoma , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/genética , Genes Supressores de Tumor , Humanos , Mutação , Proteína Supressora de Tumor p53/genética
6.
J Mol Cell Cardiol ; 67: 86-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361238

RESUMO

cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38ß. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.


Assuntos
Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Interferência de RNA , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
7.
Matrix Biol ; 131: 30-45, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788809

RESUMO

Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice. The results show that the short ColXVIII isoform predominates in the early epithelialized nephron structures whereas the two longer isoforms are expressed only in the later phases of glomerular formation. Meanwhile, electron microscopy showed that the ColXVIII mutant embryonic kidneys have ultrastructural defects at least from embryonic day 16.5 onwards. Similar structural defects had previously been observed in adult ColXVIII-deficient mice, indicating a congenital origin. The lack of ColXVIII led to a reduced NPC population in which changes in NPC proliferation and maintenance and in macrophage influx were perceived to play a role. The changes in NPC behavior in turn led to notably reduced overall nephron formation. In conclusion, the results show that ColXVIII has multiple roles in renal development, both in ureteric branching and in NPC behavior.


Assuntos
Matriz Extracelular , Camundongos Knockout , Néfrons , Células-Tronco , Animais , Néfrons/metabolismo , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Camundongos , Matriz Extracelular/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Proliferação de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Colágeno/metabolismo , Colágeno/genética
8.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763705

RESUMO

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Assuntos
Celulose , Embalagem de Alimentos , Lipídeos , Nanofibras , Madeira , Nanofibras/química , Celulose/química , Embalagem de Alimentos/métodos , Madeira/química , Lipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/química , Antibacterianos/farmacologia , Viscosidade , Musa/química , Água/química , Bactérias Gram-Negativas/efeitos dos fármacos , Frutas/química
9.
FEBS Lett ; 597(12): 1651-1666, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235702

RESUMO

Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a 2-oxoglutarate (2OG)-dependent dioxygenase implicated in Alzheimer's disease, some cancers, and immune cell functions. The substrate, kinetic and inhibitory properties, function and subcellular localization of PHYHD1 are unknown. We used recombinant expression and enzymatic, biochemical, biophysical, cellular and microscopic assays for their determination. The apparent Km values of PHYHD1 for 2OG, Fe2+ and O2 were 27, 6 and > 200 µm, respectively. PHYHD1 activity was tested in the presence of 2OG analogues, and it was found to be inhibited by succinate and fumarate but not R-2-hydroxyglutarate, whereas citrate acted as an allosteric activator. PHYHD1 bound mRNA, but its catalytic activity was inhibited upon interaction. PHYHD1 was found both in the nucleus and cytoplasm. Interactome analyses linked PHYHD1 to cell division and RNA metabolism, while phenotype analyses linked it to carbohydrate metabolism. Thus, PHYHD1 is a potential novel oxygen sensor regulated by mRNA and citrate.


Assuntos
Dioxigenases , RNA , Humanos , RNA/metabolismo , Dioxigenases/metabolismo , Metabolismo dos Carboidratos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citratos , Oxigênio
10.
JBMR Plus ; 6(6): e10630, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35720665

RESUMO

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1 +/-; P4ha2 -/- mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1 +/-; P4ha2 -/- tibia and the C-P4H activity in primary P4ha1 +/-; P4ha2 -/- osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1 +/-; P4ha2 -/- marrow. Thus, the P4ha1 +/-; P4ha2 -/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Math Biosci ; 344: 108759, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883105

RESUMO

During early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, the early structure giving rise to nephron formation. NP cells derive from metanephric mesenchymal cells and physically interact with them during the movement. Chemotaxis and cell-cell adhesion differences are believed to drive the cell patterning during this critical period of organogenesis. However, the effect of these forces to the cell patterns and their respective movements are known in limited details. We applied a Cellular Potts Model to explore how these forces and organizations contribute to directed cell movement and aggregation. Model parameters were estimated based on fitting to experimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid culture studies. Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB corner niche requires chemoattractant secretion from both the UB epithelial cells and the NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP cells were observed, both experimentally and by modelling, to move at higher speed in the UB corner as compared to the tip region where they originated. The existence of different cell speed domains along the UB was confirmed using self-organizing map analysis. In summary, we saw faster NP cell movements near aggregation. The applicability of Cellular Potts Model approach to simulate cell movement and patterning was found to be good during for this early nephrogenesis process. Further refinement of the model should allow us to recapitulate the effects of developmental changes of cell phenotypes and molecular crosstalk during further organ development.


Assuntos
Néfrons , Organogênese , Movimento Celular , Simulação por Computador , Rim , Organogênese/genética , Células-Tronco
12.
J Mol Cell Cardiol ; 50(6): 1008-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21382378

RESUMO

Sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) is an essential component of cardiomyocyte excitation-contraction (EC)-coupling. Suppression of SERCA2a expression induces contractile dysfunction and has been reported in various forms of ischemic cardiac disease as well as in hypobaric hypoxia. The present study investigated whether SERCA2a expression is regulated by hypoxia in embryonic mouse cardiomyocytes and explored the underlying mechanism. We show that in cultured embryonic cardiomyocytes hypoxia (1% O(2)) induce time-dependent downregulation of SERCA2a expression. This mechanism manifested as specific changes in cardiac myocyte calcium signals induced by reduced expression and activity of SERCA2a. Chemical activation of hypoxia-inducible factor-1 (HIF-1) by DFO or overexpression of normoxia-stabile HIF-1α (HIF-1α/VP16) suppressed endogenous SERCA2a expression as well as the activity of the SERCA2a-promoter-luciferase reporter. Analysis of the SERCA2a promoter found two putative HIF-1 binding HRE-sites. Site-specific promoter mutagenesis revealed that co-operative HIF-1 binding to both of these hypoxia response elements on the SERCA2a promoter is required for expressional suppression. This mechanism establishes a link between oxygen supply and calcium activity in embryonic cardiac myocytes that is exploited in cardiac development, and further may offer a possible explanation for the functional depression of SERCA2a seen in ischemic and hypoxic myocardium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/enzimologia , Elementos de Resposta/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Citosol/metabolismo , Ordem dos Genes , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Fator 1 Induzível por Hipóxia/genética , Camundongos , Modelos Biológicos , Oxigênio/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Elementos de Resposta/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Homologia de Sequência do Ácido Nucleico
13.
J Physiol ; 589(Pt 11): 2669-86, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486818

RESUMO

Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Benzilaminas/farmacologia , Sítios de Ligação/genética , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , DNA/metabolismo , Regulação para Baixo/genética , Fenômenos Eletrofisiológicos/fisiologia , Acoplamento Excitação-Contração/fisiologia , Retroalimentação Fisiológica/fisiologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteínas Interatuantes com Canais de Kv/genética , Camundongos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Peptídeo Natriurético Encefálico/genética , Técnicas de Patch-Clamp , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , Ratos , Ratos Endogâmicos , Proteínas Repressoras/genética , Deleção de Sequência/genética , Sulfonamidas/farmacologia , Transfecção , Regulação para Cima/genética
14.
Am J Physiol Regul Integr Comp Physiol ; 300(1): R140-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084678

RESUMO

Mechanisms regulating stretch response in the left ventricle are investigated in detail but not well understood in atrial myocardium. Hypertrophic growth of atrial myocardium contributes to the pathogenesis of atrial fibrillation. In this study, we sought to elucidate mechanisms of stretch-induced activation of key signaling pathways and hypertrophy-associated genes in rat atria. Stretching of isolated atria induced a rapid increase in phosphorylation of p38 MAPK and ERK and induced a p38 MAPK-dependent increase in DNA binding activity of transcription factors Elk-1 and GATA-4. Inhibition of the ERK pathway had no effect on the cardiac transcription factors studied. Stretch-induced increase in atrial contractile function was substantially enhanced by inhibition of p38 MAPK. p38 MAPK also regulated stretch-induced increase in c-fos, ß-myosin heavy chain, B-type natriuretic peptide mRNA levels, and atrial natriuretic peptide secretion in isolated atria. Various autocrine/paracrine factors are known to mediate the stretch response in the left ventricle. Stretching of isolated atria resulted in a robust increase in endothelin-1 (ET-1) mRNA levels, while apelin and adrenomedullin signaling cascades were downregulated. Administration of mixed ET(A/B) receptor antagonist bosentan attenuated the stretch-induced activation of GATA-4 in isolated atria, whereas ANG II receptor type-1 antagonist CV-11974 had no effect. Moreover, analysis of RNA from intact atrial and ventricular myocardium revealed significantly higher mRNA levels of ET(A) receptor and ET converting enzyme-1 in atrial compared with ventricular myocardium. In conclusion, our findings identify the local ET-1 system and p38 MAPK as key regulators of load-induced hypertrophic response in isolated rat atria.


Assuntos
Função Atrial/fisiologia , Endotelina-1/fisiologia , Contração Miocárdica/fisiologia , Reflexo de Estiramento/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Fator de Transcrição GATA4/fisiologia , Masculino , Modelos Animais , Cadeias Pesadas de Miosina/fisiologia , Peptídeo Natriurético Encefálico/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Endotelina/fisiologia
15.
Int J Biol Macromol ; 192: 461-470, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600952

RESUMO

Probiotic L. acidophilus La-14 cells were co-encapsulated with Ganoderma lingzhi extract to prolong the viability of the cells under simulated gastrointestinal (SGI) condition and to protect the active ingredients of Reishi mushroom during the storage period. Combinations of distinctive reagents (sodium alginate, chitosan, maltose, Hydroxyethyl-cellulose (HEC), hydroxypropyl methylcellulose (HPMC), and calcium lactate) were tested. Optimal double layer Ca-alginate hydrogel beads were fabricated with significantly improved characteristics. The incorporation of maltose significantly decreases the release rate of mushrooms' phenolics, antioxidants, and ß-glucan during the storage time. Significant improvement in probiotic cells viability under SGI condition has been found and confirmed by confocal laser microscopy in maltose containing double layer coated calcium alginate beads variants. The encapsulation of newly formulated prebiotic Reishi extract and probiotic L. acidophilus is creating a new potential food application for such medicinal mushrooms and natural products with unpleasant taste upon oral consumption.


Assuntos
Agaricales/química , Alginatos/química , Produtos Biológicos/química , Ganoderma/química , Lactobacillus acidophilus/química , Probióticos/química , Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Fracionamento Químico/métodos , Fenômenos Químicos , Composição de Medicamentos/métodos , Glucose/química , Metilcelulose/química , beta-Glucanas/química
16.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33298456

RESUMO

Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm-/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm-/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm-/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm-/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.


Assuntos
Astrócitos , Sinalização do Cálcio , Astrócitos/metabolismo , Humanos , Hipóxia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases
17.
Cancer Res ; 81(1): 129-143, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037065

RESUMO

Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5ß1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.


Assuntos
Neoplasias Pulmonares , Melanoma , Angiopoietina-1 , Angiopoietina-2/genética , Angiopoietinas , Animais , Neoplasias Pulmonares/genética , Camundongos , Neovascularização Patológica/genética , Remodelação Vascular
18.
J Physiol ; 588(Pt 9): 1407-17, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20211983

RESUMO

The ability to generate homogeneous intracellular Ca(2+) oscillations at high frequency is the basis of the rhythmic contractions of mammalian cardiac myocytes. While the specific mechanisms and structures enabling homogeneous high-frequency Ca(2+) signals in adult cardiomyocytes are well characterized, it is not known how these kind of Ca(2+) signals are produced in developing cardiomyocytes. Here we investigated the mechanisms reducing spatial and temporal heterogeneity of cytosolic Ca(2+) signals in mouse embryonic ventricular cardiomyocytes. We show that in developing cardiomyocytes the propagating Ca(2+) signals are amplified in cytosol by local Ca(2+) releases. Local releases are based on regular 3-D sarcoplasmic reticulum (SR) structures containing SR Ca(2+) uptake ATPases (SERCA) and Ca(2+) release channels (ryanodine receptors, RyRs) at regular intervals throughout the cytosol. By evoking [Ca(2+)](i)-induced Ca(2+) sparks, the local release sites promote a 3-fold increase in the cytosolic Ca(2+) propagation speed. We further demonstrate by mathematical modelling that without these local release sites the developing cardiomyocytes lose their ability to generate homogeneous global Ca(2+) signals at a sufficiently high frequency. The mechanism described here is robust and indispensable for normal mammalian cardiomyocyte function from the first heartbeats during the early embryonic phase till terminal differentiation after birth. These results suggest that local cytosolic Ca(2+) releases are indispensable for normal cardiomyocyte development and function of developing heart.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Algoritmos , Animais , Canais de Cálcio/fisiologia , Difusão , Eletrofisiologia , Feminino , Imunofluorescência , Camundongos , Microscopia de Fluorescência , Modelos Estatísticos , Miócitos Cardíacos/metabolismo , Gravidez , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
19.
Sci Rep ; 10(1): 12246, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699238

RESUMO

Developing trustworthy, cost effective, minimally or non-invasive glucose sensing strategies is of great need for diabetic patients. In this study, we used an experimental type I diabetic mouse model to examine whether the skin would provide novel means for identifying biomarkers associated with blood glucose level. We first showed that skin glucose levels are rapidly influenced by blood glucose concentrations. We then conducted a proteomic screen of murine skin using an experimental in vivo model of type I diabetes and wild-type controls. Among the proteins that increased expression in response to high blood glucose, Trisk 95 expression was significantly induced independently of insulin signalling. A luciferase reporter assay demonstrated that the induction of Trisk 95 expression occurs at a transcriptional level and is associated with a marked elevation in the Fluo-4AM signal, suggesting a role for intracellular calcium changes in the signalling cascade. Strikingly, these changes lead concurrently to fragmentation of the mitochondria. Moreover, Trisk 95 knockout abolishes both the calcium flux and the mitochondrial phenotype changes indicating dependency of glucose flux in the skin on Trisk 95 function. The data demonstrate that the skin reacts robustly to systemic blood changes, and that Trisk 95 is a promising biomarker for a glucose monitoring assembly.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Pele/metabolismo , Animais , Biomarcadores/metabolismo , Glicemia/metabolismo , Automonitorização da Glicemia/métodos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Insulina/metabolismo , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteômica/métodos , Transcrição Gênica/fisiologia
20.
FASEB J ; 21(8): 1821-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17341685

RESUMO

Apelin and its G-protein-coupled receptor APJ have various beneficial effects on cardiac function and blood pressure. The mechanisms that regulate apelin gene expression are not known. Because apelin gene expression has been shown to increase in cardiac ischemia, we investigated if apelin (Apln) gene expression was sensitive to hypoxia. Here we show that hypoxia increases the apelin expression in rat myocardium and in cultured cardiomyocytes. Pharmacological activation of hypoxia inducible factor by desferrioxamine (DFO) or expression of a constitutively active form of HIF-1alpha increased apelin expression in cardiomyocyte cultures. The induction of apelin by hypoxia was abolished on transient expression of the HIF inhibitory PAS protein in cardiomyocytes. Increased apelin expression induced by hypoxia or DFO was accompanied by the processing of the cellular storage form proapelin into smaller apelin peptides and increased secretion of these biologically active forms of apelin. In a rat in vivo model, acute myocardial infarction (24 h) led to a transient increase in ventricular apelin mRNA levels. Our results indicate that apelin gene is regulated by hypoxia in cardiac myocytes via the HIF pathway, suggesting a role for apelin as a potential marker for acute cardiac hypoxia with a possible compensatory role in myocardial tissue suffering from oxygen deprivation.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Miocárdio/metabolismo , Animais , Apelina , Proteínas de Transporte/metabolismo , Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intercelular , Miócitos Cardíacos/metabolismo , RNA Mensageiro/análise , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA