Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(12): e2350507, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37713238

RESUMO

Osteoarthritis (OA) is characterized by an abundance of inflammatory M1-like macrophages damaging local tissues. The search for new potential drugs for OA suffers from the lack of appropriate methods of long-lasting inflammation. Here we developed and characterized an in vitro protocol of long-lasting culture of primary human monocyte-derived macrophages differentiated with a combination of M-CSF+GM-CSF that optimally supported long-cultured macrophages (LC-Mϕs) for up to 15 days, unlike their single use. Macrophages repeatedly stimulated for 15 days with the TLR2 ligand Pam3CSK4 (LCS-Mϕs), showed sustained levels over time of IL-6, CCL2, and CXCL8, inflammatory mediators that were also detected in the synovial fluids of OA patients. Furthermore, macrophages isolated from the synovia of two OA patients showed an expression profile of inflammation-related genes similar to that of LCS-Mϕs, validating our protocol as a model of chronically activated inflammatory macrophages. Next, to confirm that these LCS-Mϕs could be modulated by anti-inflammatory compounds, we employed dexamethasone and/or celecoxib, two drugs widely used in OA treatment, that significantly inhibited the production of inflammatory mediators. This easy-to-use in vitro protocol of long-lasting inflammation with primary human macrophages could be useful for the screening of new compounds to improve the therapy of inflammatory disorders.


Assuntos
Osteoartrite , Agonistas do Receptor Semelhante a Toll , Humanos , Macrófagos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
2.
Arthroscopy ; 39(8): 1892-1904, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116549

RESUMO

PURPOSE: To summarize the available evidence regarding the clinical application of placenta-derived products to treat knee osteoarthritis (OA), underlining the differences existing among products, their preparation methods, and the clinical results reported so far. METHODS: A research on PubMed, Cochrane, and Google Scholar databases was performed. The following inclusion criteria for relevant articles were used: (1) randomized controlled trials (RCTs), prospective and retrospective studies, on humans; (2) written in English; (3) published in indexed journals in the last 10 years (2011-2022); and (4) dealing with the use of placenta-derived products for the treatment of knee OA. Exclusion criteria were articles written in other languages; animals or in vitro trials; reviews; and trials analyzing other applications of placenta-derived products not related to knee OA. RESULTS: In total, 16 studies were included in the present systematic review. Five studies investigated placenta-derived products as an augmentation during surgical procedures, whereas 11 studies were focused on the injective approach only. Of these, only 4 were RCTs and were all from the injective approach group. Potential risk of bias was carried out using Cochrane Risk of Bias 2 tool for RCTs and a modified Coleman approach for nonrandomized studies, revealing for both an overall insufficient quality. Clinical outcomes reveal excellent safety profile and notable efficacy, despite the different types of products used and different administration methods adopted. CONCLUSIONS: Placental products showed a good safety profile and overall satisfactory outcomes for the treatment of knee OA. LEVEL OF EVIDENCE: Level IV, systematic review of Level II, III and IV studies.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Injeções Intra-Articulares
3.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269906

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease treated mostly symptomatically before approaching its definitive treatment, joint arthroplasty. The rapidly growing prevalence of OA highlights the urgent need for a more efficient treatment strategy and boosts research into the mechanisms of OA incidence and progression. As a multifactorial disease, many aspects have been investigated as contributors to OA onset and progression. Differences in gender appear to play a role in the natural history of the disease, since female sex is known to increase the susceptibility to its development. The aim of the present review is to investigate the cues associated with gender by analyzing various hormonal, anatomical, molecular, and biomechanical parameters, as well as their differences between sexes. Our findings reveal the possible implications of gender in OA onset and progression and provide evidence for gaps in the current state of art, thus suggesting future research directions.


Assuntos
Cartilagem Articular , Osteoartrite , Progressão da Doença , Feminino , Humanos , Incidência , Osteoartrite/epidemiologia , Osteoartrite/etiologia
4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502046

RESUMO

Many efforts have been made in the field of nanotechnology to improve the local and sustained release of drugs, which may be helpful to overcome the present limitations in the treatment of knee OA. Nano-/microparticles and/or hydrogels can be now engineered to improve the administration and intra-articular delivery of specific drugs, targeting molecular pathways and pathogenic mechanisms involved in OA progression and remission. In order to summarize the current state of this field, a systematic review of the literature was performed and 45 relevant studies were identified involving both animal models and humans. We found that polymeric nanoparticles loaded with anti-inflammatory drugs (i.e., dexamethasone or celecoxib) are the most frequently investigated drug delivery systems, followed by microparticles and hydrogels. In particular, the nanosystem most frequently used in preclinical research consists of PLGA-nanoparticles loaded with corticosteroids and non-steroidal anti-inflammatory drugs. Overall, improvement in histological features, reduction in joint inflammation, and improvement in clinical scores in patients were observed. The last advances in the field of nanotechnology could offer new opportunities to treat patients affected by knee OA, including those with previous meniscectomy. New smart drug delivery approaches, based on nanoparticles, microparticles, and hydrogels, may enhance the therapeutic potential of intra-articular agents by increasing the permanence of selected drugs inside the joint and better targeting specific receptors and tissues.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Osteoartrite/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Humanos , Hidrogéis/química , Nanopartículas/química , Materiais Inteligentes/química
5.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669272

RESUMO

Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Músculo Esquelético/fisiologia , Músculo Liso Vascular/citologia , Junção Neuromuscular/fisiologia , Regeneração/fisiologia , Animais , Antígenos CD34/metabolismo , Diferenciação Celular/fisiologia , Células Endoteliais/transplante , Endotélio Vascular/metabolismo , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesões , Músculo Liso Vascular/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , RNA-Seq , Fatores de Transcrição SOXB1/metabolismo , Análise de Célula Única/métodos
6.
Mol Ther ; 26(4): 1093-1108, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503200

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Mioblastos/transplante , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Distrofina/genética , Imunofluorescência , Dosagem de Genes , Expressão Gênica , Ordem dos Genes , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Fenótipo , Transgenes , Transplante Autólogo
7.
Stem Cells ; 33(5): 1434-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645121

RESUMO

Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21-hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1(+) progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA-Seq. These data, in combination, revealed a cardiomyocyte-specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L-type Ca(2+) channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434-1446.


Assuntos
Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Coração/embriologia , Coração/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Cardiopatias Congênitas/genética , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
8.
Biochem Biophys Res Commun ; 464(3): 755-61, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26164231

RESUMO

Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein, derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous experiments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle regeneration after injury. In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However, when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated spontaneously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem cell line by homologous recombination. When embryonic stem cells were subjected to myogenic differentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the myogenic commitment of transgenic pluripotent stem cells. Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance muscular differentiation from both adult and pluripotent stem cells.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Desenvolvimento Muscular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/genética , Fatores de Transcrição Box Pareados/genética , Regulação para Cima
9.
Development ; 138(20): 4523-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21903674

RESUMO

Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Desenvolvimento Muscular/fisiologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Primers do DNA/genética , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Mioblastos/transplante , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Sarcoglicanopatias/genética , Sarcoglicanopatias/terapia
10.
Methods Mol Biol ; 2640: 99-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995590

RESUMO

Adult skeletal muscle is a dynamic tissue able to regenerate quite efficiently, thanks to the presence of stem cell machinery. Besides the quiescent satellite cells that are activated upon injury or paracrine factors, other stem cells are described to be directly or indirectly involved in adult myogenesis. Mesoangioblasts (MABs) are vessel-associated stem cells originally isolated from embryonic dorsal aorta and, at later stages, from the adult muscle interstitium expressing pericyte markers. Adult MABs entered clinical trials for the treatment of Duchenne muscular dystrophy and the transcriptome of human fetal MABs has been described. In addition, single cell RNA-seq analyses provide novel information on adult murine MABs and more in general in interstitial muscle stem cells. This chapter provides state-of-the-art techniques to isolate and characterize murine MABs, fetal and adult human MABs.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Adulto , Humanos , Camundongos , Animais , Músculo Esquelético , Diferenciação Celular , Células-Tronco , Pericitos , Desenvolvimento Muscular
11.
J Tissue Eng Regen Med ; 16(5): 484-495, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246958

RESUMO

Skeletal muscle regeneration is one of the major areas of interest in sport medicine as well as trauma centers. Three-dimensional (3D) bioprinting (BioP) is nowadays widely adopted to manufacture 3D constructs for regenerative medicine but a comparison between the available biomaterial-based inks (bioinks) is missing. The present study aims to assess the impact of different hydrogels on the viability, proliferation, and differentiation of murine myoblasts (C2C12) encapsulated in 3D bioprinted constructs aided to muscle regeneration. We tested three different commercially available hydrogels bioinks based on: (1) gelatin methacrylate and alginate crosslinked by UV light; (2) gelatin methacrylate, xanthan gum, and alginate-fibrinogen; (3) nanofibrillated cellulose (NFC)/alginate-fibrinogen crosslinked with calcium chloride and thrombin. Constructs embedding the cells were manufactured by extrusion-based BioP and C2C12 viability, proliferation, and differentiation were assessed after 24 h, 7, 14, 21, and 28 days in culture. Although viability, proliferation, and differentiation were observed in all the constructs, among the investigated bioinks, the best results were obtained by using NFC/alginate-fibrinogen-based hydrogel from 7 to 14 days in culture, when the embedded myoblasts started fusing, forming at day 21 and day 28 multinucleated myotubes within the 3D bioprinted structures. The results revealed an extensive myotube alignment all over the linear structure of the hydrogel, demonstrating cell maturation, and enhanced myogenesis. The bioprinting strategies that we describe here denote a strong and endorsed approach for the creation of in vitro artificial muscle to improve skeletal muscle tissue engineering for future therapeutic applications.


Assuntos
Bioimpressão , Alginatos/química , Alginatos/farmacologia , Animais , Bioimpressão/métodos , Celulose/química , Fibrinogênio , Gelatina/química , Gelatina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Metacrilatos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
12.
J Biomed Biotechnol ; 2011: 492075, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22187527

RESUMO

We recently showed that Magic-F1 (Met-activating genetically improved chimeric factor 1), a human recombinant protein derived from hepatocyte growth factor/scatter factor (HGF/SF) induces muscle cell hypertrophy but not progenitor cell proliferation, both in vitro and in vivo. Here, we examined the temporal and spatial expression pattern of Magic-F1 in comparison with Pax3 (paired box gene 3) transcription factor during embryogenesis. Ranging from 9.5 to 17.5 dpc (days post coitum) mouse embryos were analyzed by in situ hybridization using whole mounts during early stages of development (9.5-10.5-11.5 dpc) and cryostat sections for later stages (11.5-13.5-15.5-17.5 dpc). We found that Magic-F1 is expressed in developing organs and tissues of mesenchymal origin, where Pax3 signal appears to be downregulated respect to the wt embryos. These data suggest that Magic-F1 could be responsible of muscular hypertrophy, cooperating with Pax3 signal pathway in skeletal muscle precursor cells.


Assuntos
Músculo Esquelético/patologia , Proteínas Recombinantes/genética , Animais , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Hipertrofia/genética , Hipertrofia/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/embriologia , Especificidade de Órgãos , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/análise , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Reação em Cadeia da Polimerase , Gravidez , RNA Mensageiro/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
13.
Front Physiol ; 12: 701354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421639

RESUMO

Fusion-negative rhabdomyosarcoma (FN-RMS) is the most common soft tissue sarcoma of childhood arising from undifferentiated skeletal muscle cells from uncertain origin. Currently used therapies are poorly tumor-specific and fail to tackle the molecular machinery underlying the tumorigenicity and uncontrolled proliferation of FN-RMS. We and other groups recently found that microRNAs (miRNA) network contributes to myogenic epigenetic memory and can influence pluripotent stem cell commitments. Here, we used the previously identified promyogenic miRNAs and tailored it to the murine FN-RMS. Subsequently, we addressed the effects of miRNAs in vivo by performing syngeneic transplant of pre-treated FN-RMS cell line in C57Bl/6 mice. miRNA pre-treatment affects murine FN-RMS cell proliferation in vivo as showed by bioluminescence imaging analysis, resulting in better muscle performances as highlighted by treadmill exhaustion tests. In conclusion, in our study we identified a novel miRNA combination tackling the anti-myogenic features of FN-RMS by reducing proliferation and described novel antitumorigenic therapeutic targets that can be further explored for future pre-clinical applications.

14.
Front Oncol ; 11: 735002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956865

RESUMO

BACKGROUND: A surgical margin is the apparently healthy tissue around a tumor which has been removed. In oral cavity carcinoma, a negative margin is considered ≥ 5 mm, a close margin between 1 and 5 mm, and a positive margin ≤ 1 mm. Currently, the intraoperative surgical margin status is based on the visual inspection and tissue palpation by the surgeon and intraoperative histopathological assessment of the resection margins by frozen section analysis (FSA). FSA technique is limited and susceptible to sampling errors. Definitive information on the deep resection margins requires postoperative histopathological analysis. METHODS: We described a novel approach for the assessment of intraoperative surgical margins by examining a surgical specimen oriented through a 3D-printed specific patient tongue with real-time Magnetic Resonance Imaging (MRI). We reported the preliminary results of a case series of 10 patients, prospectively enrolled, with oral tongue carcinoma who underwent surgery between February 2020 and April 2021. Two radiologists with 5 and 10 years of experience, respectively, in Head and Neck radiology in consensus evaluated specimen MRI and measured the distance between the tumor and the specimen surface. We performed intraoperative bedside FSA. To compare the performance of bedside FSA and MRI in predicting definitive margin status we computed the weighted sensitivity (SE), specificity (SP), accuracy (ACC), area under the ROC curve (AUC), F1-score, Positive Predictive Value (PPV), and Negative Predictive Value (NPV). To express the concordance between FSA and ex-vivo MRI we reported the jaccard index. RESULTS: Intraoperative bedside FSA showed SE of 90%, SP of 100%, F1 of 95%, ACC of 0.9%, PPV of 100%, NPV (not a number), and jaccard of 90%, and ex-vivo MRI showed SE of 100%, SP of 100%, F1 of 100%, ACC of 100%, PPV of 100%, NPV of 100%, and jaccard of 100%. These results needed to be validated in a larger sample size of 21- 44 patients. CONCLUSION: The presented method allows a more accurate evaluation of surgical margin status, and the first clinical experiences underline the high potential of integrating FSA with ex-vivo MRI of the fresh surgical specimen.

15.
Stem Cells Transl Med ; 9(5): 575-589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31975556

RESUMO

Mesoangioblasts (MABs) derived from adult skeletal muscles are well-studied adult stem/progenitor cells that already entered clinical trials for muscle regeneration in genetic diseases; however, the transcriptional identity of human fetal MABs (fMABs) remains largely unknown. Herein we analyzed the transcriptome of MABs isolated according to canonical markers from fetal atrium, ventricle, aorta, and skeletal muscles (from 9.5 to 13 weeks of age) to uncover specific gene signatures correlating with their peculiar myogenic differentiation properties inherent to their tissue of origin. RNA-seq analysis revealed for the first time that human MABs from fetal aorta, cardiac (atrial and ventricular), and skeletal muscles display subsets of differentially expressed genes likely representing distinct expression signatures indicative of their original tissue. Identified GO biological processes and KEGG pathways likely account for their distinct differentiation outcomes and provide a set of critical genes possibly predicting future specific differentiation outcomes. This study reveals novel information regarding the potential of human fMABs that may help to improve specific differentiation outcomes relevant for therapeutic muscle regeneration.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Células Cultivadas , Humanos
16.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811811

RESUMO

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Contração Muscular/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Liso/fisiologia , Miosinas/fisiologia
17.
Aging (Albany NY) ; 12(14): 13939-13957, 2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32712599

RESUMO

Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with anti-atrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia.


Assuntos
Envelhecimento/patologia , Grelina/biossíntese , Grelina/genética , Músculo Esquelético/patologia , Acilação , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Grelina/farmacologia , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Sarcopenia/genética , Sarcopenia/patologia
18.
Cell Death Differ ; 27(5): 1520-1538, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31654035

RESUMO

Defective cell migration causes delayed wound healing (WH) and chronic skin lesions. Autologous micrograft (AMG) therapies have recently emerged as a new effective and affordable treatment able to improve wound healing capacity. However, the precise molecular mechanism through which AMG exhibits its beneficial effects remains unrevealed. Herein we show that AMG improves skin re-epithelialization by accelerating the migration of fibroblasts and keratinocytes. More specifically, AMG-treated wounds showed improvement of indispensable events associated with successful wound healing such as granulation tissue formation, organized collagen content, and newly formed blood vessels. We demonstrate that AMG is enriched with a pool of WH-associated growth factors that may provide the starting signal for a faster endogenous wound healing response. This work links the increased cell migration rate to the activation of the extracellular signal-regulated kinase (ERK) signaling pathway, which is followed by an increase in matrix metalloproteinase expression and their extracellular enzymatic activity. Overall we reveal the AMG-mediated wound healing transcriptional signature and shed light on the AMG molecular mechanism supporting its potential to trigger a highly improved wound healing process. In this way, we present a framework for future improvements in AMG therapy for skin tissue regeneration applications.


Assuntos
Movimento Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transplante de Pele , Cicatrização , Animais , Movimento Celular/genética , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Queratinócitos/citologia , Queratinócitos/enzimologia , Sistema de Sinalização das MAP Quinases/genética , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Solubilidade , Transcrição Gênica , Transplante Autólogo , Cicatrização/genética
19.
J Muscle Res Cell Motil ; 30(7-8): 243-53, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20195710

RESUMO

Skeletal muscle hypertrophy is a result of increased load, such as functional and stretch-overload. Activation of satellite cells and proliferation, differentiation and fusion are required for hypertrophy of overloaded skeletal muscles. On the contrary, a dramatic loss of skeletal muscle mass determines atrophy settings. The epigenetic changes involved in gene regulation at DNA and chromatin level are critical for the opposing phenomena, muscle growth and atrophy. Physiological properties of skeletal muscle tissue play a fundamental role in health and disease since it is the most abundant tissue in mammals. In fact, protein synthesis and degradation are finely modulated to maintain an appropriate muscle mass. When the molecular signaling is altered muscle wasting and weakness occurred, and this happened in most common inherited and acquired disorders such as muscular dystrophies, cachexia, and age-related wasting. To date, there is no accepted treatment to improve muscle size and strength, and these conditions pose a considerable anxiety to patients as well as to public health. Several molecules, including Magic-F1, myostatin inhibitor, IGF, glucocorticoids and microRNAs are currently investigated to interfere positively in the blueprint of skeletal muscle growth and regeneration.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Somatomedinas/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Caquexia/metabolismo , Caquexia/patologia , Células/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Músculo Esquelético/patologia , Músculos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Sistema Musculoesquelético/metabolismo , Mioblastos/metabolismo , Miostatina/metabolismo , Regeneração/fisiologia
20.
Pharmaceuticals (Basel) ; 10(2)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608799

RESUMO

Cartilage defects represent a serious problem due to the poor regenerative properties of this tissue. Regarding the nose, nasal valve collapse is associated with nasal blockage and persistent airway obstruction associated with a significant drop in the quality of life for patients. In addition to surgical techniques, several cell-based tissue-engineering strategies are studied to improve cartilage support in the nasal wall, that is, to ameliorate wall insufficiency. Nevertheless, there are no congruent data available on the benefit for patients during the follow-up time. In this manuscript, we propose an innovative approach in the treatment of cartilage defects in the nose (nasal valve collapse) based on autologous micro-grafts obtained by mechanical disaggregation of a small portion of cartilage tissue (Rigenera® protocol). In particular, we first analyzed in vitro murine and human cartilage micro-grafts; secondly, we analyzed the clinical results of a patient with pinched nose deformity treated with autologous micro-grafts of chondrocytes obtained by Rigenera® protocol. The use of autologous micro-graft produced promising results in surgery treatment of cartilage injuries and could be safely and easily administrated to patients with cartilage tissue defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA