Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071997

RESUMO

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Feminino , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações , Haploinsuficiência/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Humanos
2.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787418

RESUMO

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Assuntos
Metilação de DNA , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Criança
3.
Genet Med ; 26(3): 101050, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38126281

RESUMO

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Transtorno do Espectro Autista/genética , Peptidase 7 Específica de Ubiquitina/genética , Epigenômica , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Biomarcadores
4.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38384171

RESUMO

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 9 , Metilação de DNA , Cardiopatias Congênitas , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Cromossomos Humanos Par 9/genética , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Duplicação Cromossômica/genética , Criança , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Adolescente , Fenótipo
5.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
6.
Reprod Biomed Online ; 47(4): 103226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597348

RESUMO

RESEARCH QUESTION: Are TUBB8 gene variations present in Iranian infertile women with oocyte maturation arrest or embryo cleavage arrest? DESIGN: TUBB8 gene variations were investigated by polymerase chain reaction sequencing on blood samples from 16 women with oocyte maturation arrest and 12 women with cleavage arrest, collectively referred to as the experimental cohort, as well as 56 fertile women as the control group. The Exome Sequencing Project and dbSNP databases and the Genome Aggregation Database were used to search the frequency of corresponding variants. PolyPhen and SIFT were used to conduct in-silico analysis of gene variations and Align-GVGD was used to predict the effect of missense variants on proteins. The homology modelling and structure evaluation of variations was also checked. RESULTS: Two likely pathogenic variants [c.713C>T (p.Thr238Met), c.1054G>T (p.Ala352Ser)] were identified in patients with oocyte maturation arrest and one likely pathogenic variant [c.G763A, (p.Val255Met)] was identified in a patient with cleavage arrest. These changes were absent in controls. CONCLUSIONS: Three deleterious variants in TUBB8 related to oocyte maturation arrest or cleavage arrest and infertility were identified. TUBB8 variant screening for patients with oocyte maturation and cleavage arrest is recommended.


Assuntos
Infertilidade Feminina , Humanos , Feminino , Infertilidade Feminina/genética , Irã (Geográfico) , Oócitos , Fertilidade , Fase de Clivagem do Zigoto , Tubulina (Proteína)/genética
7.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762546

RESUMO

JARID2 (Jumonji, AT-rich interactive domain 2) haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. It is characterized by intellectual disability, developmental delay, autistic features, behavior abnormalities, cognitive impairment, hypotonia, and dysmorphic features. JARID2 acts as a transcriptional repressor protein that is involved in the regulation of histone methyltransferase complexes. JARID2 plays a role in the epigenetic machinery, and the associated syndrome has an identified DNA methylation episignature derived from sequence variants and intragenic deletions involving JARID2. For this study, our aim was to determine whether patients with larger deletions spanning beyond JARID2 present a similar DNA methylation episignature and to define the critical region involved in aberrant DNA methylation in 6p22-p24 microdeletions. We examined the DNA methylation profiles of peripheral blood from 56 control subjects, 13 patients with (likely) pathogenic JARID2 variants or patients carrying copy number variants, and three patients with JARID2 VUS variants. The analysis showed a distinct and strong differentiation between patients with (likely) pathogenic variants, both sequence and copy number, and controls. Using the identified episignature, we developed a binary model to classify patients with the JARID2-neurodevelopmental syndrome. DNA methylation analysis indicated that JARID2 is the driver gene for aberrant DNA methylation observed in 6p22-p24 microdeletions. In addition, we performed analysis of functional correlation of the JARID2 genome-wide methylation profile with the DNA methylation profiles of 56 additional neurodevelopmental disorders. To conclude, we refined the critical region for the presence of the JARID2 episignature in 6p22-p24 microdeletions and provide insight into the functional changes in the epigenome observed when regulation by JARID2 is lost.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Genômica , Transtornos do Neurodesenvolvimento/genética , Epigenoma , Deficiência Intelectual/genética , Epigenômica , Complexo Repressor Polycomb 2/genética
8.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904121

RESUMO

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Intergênico , Epigênese Genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Síndrome
9.
Genet Med ; 24(6): 1261-1273, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341651

RESUMO

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Assuntos
Metilação de DNA , Hipogonadismo , Síndrome de Klinefelter , Transtornos do Neurodesenvolvimento , Fatores de Transcrição SOXC , Metilação de DNA/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores de Transcrição SOXC/genética , Sequenciamento do Exoma
10.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887210

RESUMO

Large structural chromosomal deletions and duplications, referred to as copy number variants (CNVs), play a role in the pathogenesis of neurodevelopmental disorders (NDDs) through effects on gene dosage. This review focuses on our current understanding of genomic disorders that arise from large structural chromosome rearrangements in patients with NDDs, as well as difficulties in overlap of clinical presentation and molecular diagnosis. We discuss the implications of epigenetics, specifically DNA methylation (DNAm), in NDDs and genomic disorders, and consider the implications and clinical impact of copy number and genomic DNAm testing in patients with suspected genetic NDDs. We summarize evidence of global methylation episignatures in CNV-associated disorders that can be used in the diagnostic pathway and may provide insights into the molecular pathogenesis of genomic disorders. Finally, we discuss the potential for combining CNV and DNAm assessment into a single diagnostic assay.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Neurodesenvolvimento , Metilação de DNA , Epigênese Genética , Epigenômica , Humanos , Transtornos do Neurodesenvolvimento/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887345

RESUMO

JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Complexo Repressor Polycomb 2 , Humanos , Motivos de Nucleotídeos , Fenótipo , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional , Síndrome
12.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430143

RESUMO

Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Humanos , Fácies , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo
13.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445317

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is the most common genomic disorder in humans and is the result of a recurrent 1.5 to 2.5 Mb deletion, encompassing approximately 20-40 genes, respectively. The clinical presentation of the typical deletion includes: Velocardiofacial, Di George, Opitz G/BBB and Conotruncalanomaly face syndromes. Atypical deletions (proximal, distal or nested) are rare and characterized mainly by normal phenotype or mild intellectual disability and variable clinical features. The pathogenetic mechanisms underlying this disorder are not completely understood. Because the 22q11.2 region harbours genes coding for transcriptional factors and chromatin remodelers, in this study, we performed analysis of genome-wide DNA methylation of peripheral blood from 49 patients with 22q11.2DS using the Illumina Infinium Methylation EPIC bead chip arrays. This cohort comprises 43 typical, 2 proximal and 4 distal deletions. We demonstrated the evidence of a unique and highly specific episignature in all typical and proximal 22q11.2DS. The sensitivity and specificity of this signature was further confirmed by comparing it to over 1500 patients with other neurodevelopmental disorders with known episignatures. Mapping the 22q11.2DS DNA methylation episignature provides both novel insights into the molecular pathogenesis of this disorder and an effective tool in the molecular diagnosis of 22q11.2DS.


Assuntos
Metilação de DNA , Síndrome de DiGeorge/genética , Epigenoma , Feminino , Humanos , Lactente , Masculino
14.
Eur J Hum Genet ; 32(6): 619-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351292

RESUMO

Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.


Assuntos
Metilação de DNA , Fácies , Doença de Hirschsprung , Proteínas de Homeodomínio , Deficiência Intelectual , Microcefalia , Proteínas Repressoras , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/patologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/patologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Ilhas de CpG
15.
HGG Adv ; 5(3): 100309, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38751117

RESUMO

Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Masculino , Feminino , Fatores de Transcrição/genética , Criança , Epigênese Genética , Pré-Escolar , Proteínas de Ligação a DNA/genética , Mutação , Adolescente
16.
medRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39148819

RESUMO

8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.

17.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38571311

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Assuntos
Metilação de DNA , Hiperventilação , Deficiência Intelectual , Fator de Transcrição 4 , Humanos , Fator de Transcrição 4/genética , Hiperventilação/genética , Hiperventilação/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Feminino , Masculino , Criança , Fácies , Adolescente , Epigenômica/métodos , Epigênese Genética , Hipercinese/genética , Pré-Escolar , Adulto , Adulto Jovem
18.
Epigenomics ; 14(21): 1373-1388, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537268

RESUMO

In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Epigênese Genética , Fenótipo , Genoma
19.
HGG Adv ; 3(1): 100075, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047860

RESUMO

Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.

20.
Front Genet ; 12: 698595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326862

RESUMO

BACKGROUND: Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. METHODS: A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). RESULTS: A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. CONCLUSION: This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA