Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(18): 8317-8336, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482975

RESUMO

Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 µs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.


Assuntos
Fotoquimioterapia , Rutênio , Humanos , Hipóxia , Fenantrolinas , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia
2.
J Phys Chem A ; 126(8): 1336-1344, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35179905

RESUMO

TLD1433 is the first ruthenium (Ru)-based photodynamic therapy (PDT) agent to advance to clinical trials and is currently in a phase II study for treating nonmuscle bladder cancer with PDT. Herein, we present a photophysical study of TLD1433 and its derivative TLD1633 using complex, biologically relevant solvents to elucidate the excited-state properties that are key for biological activity. The complexes incorporate an imidazo [4,5-f][1,10]phenanthroline (IP) ligand appended to α-ter- or quaterthiophene, respectively, where TLD1433 = [Ru(4,4'-dmb)2(IP-3T)]Cl2 and TLD1633 = [Ru(4,4'-dmb)2(IP-4T)]Cl2 (4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine; 3T = α-terthiophene; 4T = α-quaterthiophene). Time-resolved transient absorption experiments demonstrate that the excited-state dynamics of the complexes change upon interaction with biological macromolecules (e.g., DNA). In this case, the accessibility of the lowest-energy triplet intraligand charge-transfer (3ILCT) state (T1) is increased at the expense of a higher-lying 3ILCT state. We attribute this behavior to the increased rigidity of the ligand framework upon binding to DNA, which prolongs the lifetime of the T1 state. This lowest-lying state is primarily responsible for O2 sensitization and hence photoinduced cytotoxicity. Therefore, to gain a realistic picture of the excited-state kinetics that underlie the photoinduced function of the complexes, it is necessary to interrogate their photophysical dynamics in the presence of biological targets once they are known.


Assuntos
Fotoquimioterapia , Rutênio , Ligantes , Fenantrolinas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Rutênio/química , Rutênio/farmacologia
3.
Am J Cancer Res ; 12(1): 210-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141014

RESUMO

Cancer therapies that generate T cell-based anti-cancer immune responses are critical for clinical success and are favored over traditional therapies. One way to elicit T cell immune responses and generate long-lasting anti-cancer immunity is through induction of immunogenic cell death (ICD), a form of regulated cell death that promotes antigenicity and adjuvanticity within dying cells. Therefore, research in the last decade has focused on developing cancer therapies which stimulate ICD. Herein, we report novel photodynamic therapy (PDT) compounds with immunomodulatory and ICD inducing properties. PDT is a clinically approved, minimally invasive anti-cancer treatment option and has been extensively investigated for its tumor-destroying properties, lower side effects, and immune activation capabilities. In this study, we explore two structurally related ruthenium compounds, ML19B01 and ML19B02, that can be activated with near infrared light to elicit superior cytotoxic properties. In addition to its direct cell killing abilities, we investigated the effect of our PSs on immunological pathways upon activation. PDT treatment with ML19B01 and ML19B02 induced differential expression of reactive oxygen species, proinflammatory response-mediating genes, and heat shock proteins. Dying melanoma cells induced by ML19B01-PDT and ML19B02-PDT contained ICD hallmarks such as calreticulin, ATP, and HMGB1, initiated activation of antigen presenting cells, and were efficiently phagocytosed by bone marrow-derived dendritic cells. Most importantly, despite the distinct profiles of ICD hallmark inducing capacities, vaccination with both PDT-induced dying cancer cells established anti-tumor immunity that protected mice against subsequent challenge with melanoma cells.

4.
Chem Sci ; 11(43): 11740-11762, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33976756

RESUMO

Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cl n , were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292-0.602 µM and PIs as high as 156-360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69-93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg-1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA