Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674590

RESUMO

Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin's lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin's lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.


Assuntos
Linfoma não Hodgkin , Quinases da Família src , Camundongos , Humanos , Animais , Lectinas/farmacologia , Linhagem Celular , Polissacarídeos/metabolismo , Quinase Syk
2.
J Infect Dis ; 224(1): 164-174, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33201217

RESUMO

BACKGROUND: The thermodimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from Paracoccidioides brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that affect disease development. METHODS: Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media. RESULTS: ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis. CONCLUSIONS: Our data are consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.


Assuntos
Parede Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/fisiologia , Lectinas/fisiologia , Paracoccidioides/patogenicidade , Animais , Citocinas/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioidomicose/imunologia , Fagocitose , Virulência
3.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226171

RESUMO

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Protozoários/imunologia , Ácidos Siálicos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Interleucina-12/imunologia , Camundongos , Camundongos Knockout , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Toxoplasmose Animal/genética
4.
Odontology ; 108(4): 560-568, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32076883

RESUMO

Previous studies have shown that topical application of lectin Artin-M accelerates wound healing in the rat oral mucosa. The aim of this study was to evaluate, by means of histology and immunohistochemistry (IHC) the effects of Artin-M on wound healing in the palatal mucosa in dogs. Three full thickness wounds of 6 mm diameter were surgically created in the palatal mucosa of twenty dogs and randomly divided into three groups according to one of the treatment assigned: Group C-Control (coagulum); Group A-Artin-M gel; Group V-Vehicle (carboxymethylcellulose 3%). Each animal received all the three experimental treatments. Afterwards, four animals were killed at 2, 4, 7, 14 and 21 days post-surgery. Wounded areas were photographed and scored for macroscopic evaluation. Biopsies were harvested and used for descriptive histological analysis, proliferating cell nuclear antigen IHC and measurement of myeloperoxidase activity. The results demonstrated faster wound closure in group A in comparison to the other groups in all the periods evaluated. Histological analyses exhibited improved re-epithelialization and collagen fiber formation resulting in faster maturation of granulation tissue in group A compared to the other groups by day 14. Treatment with Artin-M gel significantly induced cell proliferation and increased volumetric density of fibroblasts at day 2 and 4 (p < 0.05). Neutrophil infiltration in group A was significantly higher than the other groups (p < 0.05) at the same time points. Collectively, our findings demonstrated that Artin-M may potentially favor wound healing on palatal mucosa lesions via recruitment of neutrophils and promotion of cell proliferation.


Assuntos
Palato , Cicatrização , Animais , Cães , Fibroblastos , Lectinas , Mucosa Bucal , Ratos
5.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658592

RESUMO

The microneme organelles of Toxoplasma gondii tachyzoites release protein complexes (MICs), including one composed of the transmembrane protein MIC6 plus MIC1 and MIC4. In this complex, carbohydrate recognition domains of MIC1 and MIC4 are exposed and interact with terminal sialic acid and galactose residues, respectively, of host cell glycans. Recently, we demonstrated that MIC1 and MIC4 binding to the N-glycans of Toll-like receptor (TLR) 2 and TLR4 on phagocytes triggers cell activation and pro-inflammatory cytokine production. Herein, we investigated the requirement for TLR2 heterodimerization and co-receptors in MIC-induced responses, as well as the signaling molecules involved. We used MICs to stimulate macrophages and HEK293T cells transfected with TLR2 and TLR1 or TLR6, both with or without the co-receptors CD14 and CD36. Then, the cell responses were analyzed, including nuclear factor-kappa B (NF-κB) activation and cytokine production, which showed that (1) only TLR2, among the studied factors, is crucial for MIC-induced cell activation; (2) TLR2 heterodimerization augments, but is not critical for, activation; (3) CD14 and CD36 enhance the response to MIC stimulus; and (4) MICs activate cells through a transforming growth factor beta-activated kinase 1 (TAK1)-, mammalian p38 mitogen-activated protein kinase (p38)-, and NF-κB-dependent pathway. Remarkably, among the studied factors, the interaction of MIC1 and MIC4 with TLR2 N-glycans is sufficient to induce cell activation, which promotes host protection against T. gondii infection.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Dimerização , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Toxoplasma/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Citocinas/análise , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Receptor 1 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Molecules ; 23(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30216978

RESUMO

ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing Toll-like receptor (TLR)2 and cluster of differentiation (CD)14 N-glycans, induces cytokine production, and promotes type 1 T helper (Th1) immunity, a process that plays an assisting role in the combat against fungal infections. We recently demonstrated that ArtinM stimulates CD4⁺ T cells to produce interleukin (IL)-17 through direct interaction with CD3. Here, we further investigated the effects of ArtinM on the production of IL-17 by B cell activation. We showed that ArtinM activates murine B cells, increasing IL-17 and IL-12p40 production. The direct effect of ArtinM was sufficient to induce IL-17 production in B cells, and we did not find differences in the levels of IL-17 between the B cells purified from the wild-type (WT) and knockout (KO) mice for TLR2 or CD14 in the presence of ArtinM. Thus, the effects of ArtinM on splenic B cells through carbohydrate recognition may contribute to Th17 immunity; however, the mechanism involved is not associated with the interaction of ArtinM with TLR2 and CD14. The current work represents a pioneering effort in the understanding of the induction of IL-17 by lectins in B cells.


Assuntos
Linfócitos B/efeitos dos fármacos , Interleucina-17/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lectinas de Plantas/farmacologia , Receptor 2 Toll-Like/metabolismo , Animais , Artocarpus/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Receptores de Lipopolissacarídeos/genética , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Receptor 2 Toll-Like/genética
7.
Int J Mol Sci ; 18(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665310

RESUMO

The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4⁺ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4⁺ and CD8⁺ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4⁺ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4⁺ and CD8⁺ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1ß production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia.


Assuntos
Morte Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Lectinas de Ligação a Manose/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
BMC Immunol ; 17(1): 22, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27377926

RESUMO

BACKGROUND: Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. RESULTS: The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing ß-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. CONCLUSIONS: The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.


Assuntos
Mastócitos/imunologia , Lectinas de Plantas/imunologia , Proteínas Recombinantes/imunologia , Animais , Artocarpus/imunologia , Degranulação Celular , Linhagem Celular , Clonagem Molecular , Escherichia coli/genética , Histamina/metabolismo , Imunoglobulina E/metabolismo , Imunomodulação , Interleucina-4/metabolismo , Manose/metabolismo , NF-kappa B/metabolismo , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Ratos , Proteínas Recombinantes/isolamento & purificação , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Curr Genomics ; 17(2): 112-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226767

RESUMO

Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as ß-1,3-glucanosyltransferase (PbGEL3), 1,3-ß-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-ß-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and ß-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM.

10.
Biol Reprod ; 92(3): 82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673564

RESUMO

Considering that interleukin 10 (IL10), transforming growth factor beta1 (TGFB1), and interferon gamma (IFNG) are involved in the susceptibility of BeWo trophoblast cells to Toxoplasma gondii infection, the aim of the present study was to investigate the effector mechanisms triggered by these cytokines in the control of T. gondii in BeWo cells. For this purpose, infected/uninfected BeWo cells were treated with IL10, TGFB1 (50 ng/ml), and IFNG (20 or 100 ng/ml) in order to verify the phosphorylation of signal transducers and activators of transcription 1 (STAT1), STAT3, and Smad2, parasite intracellular proliferation, as well as the Th1/Th2/IL17A cytokine production. The treatment of BeWo cells with IL10 and TGFB1 favored T. gondii proliferation, and these findings were associated with STAT3 and Smad2 phosphorylation, respectively (P < 0.05). Also, these cytokine treatments were able to down-modulate TNF alpha (TNFA) and IL6 production (P < 0.05). Low concentration of IFNG was unable to control T. gondii infection but was able to trigger STAT1 phosphorylation and up-regulate IL6 and IL17A production; whereas a high concentration of IFNG was unable to activate STAT1 but down-modulated IL6 and TNFA and increased T. gondii proliferation (P < 0.05). IL10, TGFB1, and IFNG regulate a differential T. gondii proliferation in BeWo cells because they distinctly trigger intracellular signaling pathways and cytokine production, especially IL6 and TNFA. Our data open new windows to understand the mechanisms triggered by IL10, TGFB1, and IFNG at the maternal-fetal interface in the presence of T. gondii, contributing to recognizing the importance of these effector mechanisms involved in the vertical transmission of this parasite.


Assuntos
Citocinas/metabolismo , Interferon gama/farmacologia , Interleucina-10/farmacologia , Transdução de Sinais/efeitos dos fármacos , Toxoplasmose/prevenção & controle , Fator de Crescimento Transformador beta1/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/parasitologia , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Suscetibilidade a Doenças , Feminino , Humanos , Técnicas In Vitro , Interleucina-16/metabolismo , Fosforilação , Gravidez , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Toxoplasma/isolamento & purificação , Toxoplasmose/metabolismo , Toxoplasmose/patologia , Trofoblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Uterinas/patologia
11.
Langmuir ; 31(44): 12111-9, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26488670

RESUMO

A deeper understanding of the role of sialic/desialylated groups during TgMIC4-glycoproteins interactions has importance to better clarify the odd process of host cell invasion by members of the apicomplexan phylum. Within this context, we evaluated the interaction established by recombinant TgMIC4 (the whole molecule) with sialylated (bovine fetuin) and desialylated (asialofetuin) glycoproteins by using functionalized quartz crystal microbalance with dissipation monitoring (QCM-D). A suitable receptive surface containing recombinant TgMIC4 for monitoring ß-galactose-containing carbohydrate ligand (limit of quantification ∼ 40 µM) was designed and used as biomolecular recognition platform to study the binding and conformational mechanisms of TgMIC4 during the interaction with glycoprotein containing (fetuin), or not, terminal sialic group (asialofetuin). It was inferred that the binding/interaction monitoring depends on the presence/absence of sialic groups in target protein and is possible to be differentiated through a slower binding kinetic step using QCM-D approach (which we are inferring to be thus associated with ß-galactose ligand). This slower binding/interaction step is likely supposed (from mechanical energetic analysis obtained in QCM-D measurements) to be involved with Toxoplasma gondii (the causative agent of toxoplasmosis) parasitic invasion accompanied by ligand (galactose) induced binding conformational change (i.e., cell internalization process can be additionally dependent on structural conformational changes, controlled by the absence of sialic groups and to the specific binding with galactose), in addition to TgMIC4-glycoprotein solely recognition binding process.


Assuntos
Carboidratos/química , Galactose/química , Proteínas de Protozoários/química , Toxoplasma/química , Adsorção , Ligantes , Conformação Molecular , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo
12.
Glycobiology ; 24(2): 179-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225883

RESUMO

The invasion of host cells by the intracellular protozoan Trypanosoma cruzi requires interactions with host cell molecules, and the replication of the parasite requires escape from a parasitophorous vacuole into the host cell cytosol. Galectin-3, a member of ß-galactosidase-binding lectin family, has numerous extracellular and intracellular functions. In this study, we investigated the role of galectin-3 during the invasion and intracellular trafficking of T. cruzi extracellular amastigotes (EAs). Endogenous galectin-3 from mouse peritoneal macrophages accumulated around the pathogen during cell invasion by EAs. In addition, galectin-3 accumulated around parasites after their escape from the parasitophorous vacuole. Thus, galectin-3 behaved as a novel marker of phagolysosome lysis during the infection of host cells by T. cruzi.


Assuntos
Galectina 3/metabolismo , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/patogenicidade , Animais , Transporte Biológico , Células Cultivadas , Citoplasma/parasitologia , Células-Tronco Embrionárias/parasitologia , Endocitose , Humanos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
13.
Eur J Immunol ; 43(7): 1806-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592449

RESUMO

Galectin-3, an endogenous glycan-binding protein, plays essential roles during microbial infection by modulating innate and adaptive immunity. However, the role of galectin-3 within the CD4(+) CD25(+) Foxp3(+) T regulatory (TREG ) cell compartment has not yet been explored. Here, we found, in a model of Leishmania major infection, that galectin-3 deficiency increases the frequency of peripheral TREG cells both in draining lymph nodes (LNs) and sites of infection. These observations correlated with an increased severity of the disease, as shown by increased footpad swelling and parasite burden. Galectin-3-deficient (Lgals3(-/-) ) TREG cells displayed higher CD103 expression, showed greater suppressive capacity, and synthesized higher amounts of IL-10 compared with their wild-type (WT) counterpart. Furthermore, both TREG cells and T effector (TEFF ) cells from Lgals3(-/-) mice showed higher expression of Notch1 and the Notch target gene Hes-1. Interestingly, Notch signaling components were also altered in both TREG and TEFF cells from uninfected Lgals3(-/-) mice. Thus, endogenous galectin-3 regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) TREG cells and alters the course of L. major infection.


Assuntos
Galectina 3/imunologia , Leishmaniose Cutânea/imunologia , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Imuno-Histoquímica , Leishmania major , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Yeast ; 31(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155051

RESUMO

The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-ß-D-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated inhibition of N-linked glycosylation on α- and ß-(1,3)-glucanases and on α-(1,4)-amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α- or ß-(1,3)-glucanase production and secretion. Moreover, incubation with TM did not alter α- and ß-(1,3)-glucanase activity in yeast and mycelium cell extracts. In contrast, α-(1,4)-amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N-glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N-glycans were essential for α-(1,4)-amylase activity involved in the production of malto-oligosaccharides that act as primer molecules for the biosynthesis of α-(1,3)-glucan. Our results suggest that reduced fungal α-(1,4)-amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells.


Assuntos
Anti-Infecciosos/farmacologia , Glucana 1,3-beta-Glucosidase/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Tunicamicina/farmacologia , alfa-Amilases/metabolismo , Paracoccidioides/citologia , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia
15.
Cell Tissue Res ; 357(3): 719-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24842046

RESUMO

ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4(+) T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition.


Assuntos
Fatores Imunológicos/farmacologia , Lectinas de Ligação a Manose/farmacologia , Baço/citologia , Animais , Artocarpus/química , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucina-2/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Masculino , Lectinas de Ligação a Manose/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Immunotherapy ; : 1-16, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940276

RESUMO

Aim: Cryptococcus gattii causes a severe fungal infection with high mortality rate among immunosuppressed and immunocompetent individuals. Due to limitation of current antifungal treatment, new immunotherapeutic approaches are explored. Methods: This study investigated an immunization strategy utilizing heat-inactivated C. gattii with ArtinM as an adjuvant. C57BL/6 mice were intranasally immunized with heat-killed C. gattii and ArtinM was administrated either before immunization or along with HK-C. gattii. Mice were infected with C. gattii and the efficacy of the immunization protocol was evaluated. Results: Mice that received ArtinM exhibited increased levels of IL-10 and relative expression of IL-23 in the lungs, reduced fungal burden and preserved tissue integrity post-infection. Conclusion: Adjuvant ArtinM improved immunization against C. gattii infection in C57BL/6 mice.


Cryptococcus gattii is a fungus that can make lungs sick. Right now, there are no good treatments for it, so scientists are trying to find new ways to fight it. In a recent study, they tested a type of immunotherapy called ArtinM to see if it could help. When they gave ArtinM to mice, the mice got healthier and had less fungus in their lungs. This means ArtinM might be able to help fight this fungus.

17.
J Biol Chem ; 287(20): 16720-33, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22399295

RESUMO

Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.


Assuntos
Galactose/metabolismo , Galectinas/metabolismo , Complexos Multiproteicos/metabolismo , Toxoplasma/metabolismo , Animais , Moléculas de Adesão Celular , Galactose/imunologia , Galectinas/química , Galectinas/genética , Galectinas/imunologia , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Estrutura Terciária de Proteína , Proteínas de Protozoários , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia , Toxoplasmose/metabolismo
18.
Glycoconj J ; 30(7): 641-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23299509

RESUMO

Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.


Assuntos
Fatores Imunológicos/farmacologia , Lectinas de Plantas/farmacologia , Animais , Artocarpus/química , Artocarpus/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Lectinas de Plantas/química , Lectinas de Plantas/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia
19.
Virulence ; 14(1): 2150455, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599817

RESUMO

Paracoccin (PCN), a Paracoccidioides brasiliensis glycoprotein, has been reported to play roles in fungal biology and paracoccidioidomycosis pathogenesis. Lectin and chitinase domains account for the PCN's dual roles as an immunomodulatory agent and virulence factor. Soluble PCN injected in P. brasiliensis infected mice, by interacting with TLRs' N-glycans, drives the host immune response toward a protective Th1 axis. Otherwise, mice infection with yeasts overexpressing PCN (ov-PCN) revealed that PCN acts as a fungal virulence factor, thanks to its chitinase activity on the cell wall, resulting in resistance to phagocytes' fungicidal activity and development of severe paracoccidioidomycosis. Because antifungal drug administration follows the disease diagnosis, we studied the PCN effect on yeast resistance or susceptibility to antifungal agents. Using a paracoccidioidomycosis model developed in Galleria mellonella larvae, we confirmed the observation, in the murine host, that ov-PCN yeasts display maximum virulence compared to wild-type (wt-PCN) or PCN-silenced (kd-PCN) yeasts. PCN overexpression accounted for the highest susceptibility of P. brasiliensis to antifungal and reduced relative mRNA expression of genes encoding proteins related to cell wall remodeling. The lowest virulence, detected in infection with kd-PCN yeasts, correlated with the lowest susceptibility to antifungals and impact on genes for cell wall remodeling. So, we defined that the grade of endogenous PCN production influences the P. brasiliensis virulence and susceptibility to antifungal drugs, as well as the expression of genes related to cell wall remodeling. We postulate that this variable gene expression is mechanistically associated with P. brasiliensis virulence changes.


Assuntos
Mariposas , Paracoccidioides , Paracoccidioidomicose , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Virulência , Larva , Paracoccidioidomicose/microbiologia , Paracoccidioides/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mariposas/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
BMC Biotechnol ; 12: 44, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22857259

RESUMO

BACKGROUND: ArtinM is a d-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. RESULTS: The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized d-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises ß-sheet structure. CONCLUSIONS: Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.


Assuntos
Escherichia coli/metabolismo , Lectinas de Ligação a Manose/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Cromatografia de Afinidade , Dicroísmo Circular , Clonagem Molecular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Interleucina-12/metabolismo , Isopropiltiogalactosídeo/metabolismo , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mapeamento de Peptídeos , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Baço/citologia , Baço/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA