Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Issues Mol Biol ; 42: 307-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33300496

RESUMO

Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.


Assuntos
Infecções por Borrelia/microbiologia , Borrelia/genética , Engenharia Genética , Animais , Suscetibilidade a Doenças , Engenharia Genética/métodos , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/microbiologia
2.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257311

RESUMO

The spirochete Borrelia burgdorferi causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into B. burgdorferi biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in B. burgdorferi For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of dcas9 and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes flaB, mreB, rodA, and ftsI, whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in B. burgdorferi Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the Borrelia genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our B. burgdorferi CRISPRi platform, which should facilitate future genetic studies of this important pathogen.IMPORTANCE Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in B. burgdorferi, as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of dcas9 expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in B. burgdorferi.

3.
Mol Microbiol ; 112(3): 973-991, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31240776

RESUMO

When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate-specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co-repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR-binding site was mapped 5' of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética
4.
PLoS Pathog ; 14(4): e1006959, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621350

RESUMO

Lyme disease in humans is caused by several genospecies of the Borrelia burgdorferi sensu lato (s.l.) complex of spirochetal bacteria, including B. burgdorferi, B. afzelii and B. garinii. These bacteria exist in nature as obligate parasites in an enzootic cycle between small vertebrate hosts and Ixodid tick vectors, with humans representing incidental hosts. During the natural enzootic cycle, infected ticks in endemic areas feed not only upon naïve hosts, but also upon seropositive infected hosts. In the current study, we considered this environmental parameter and assessed the impact of the immune status of the blood-meal host on the phenotype of the Lyme disease spirochete within the tick vector. We found that blood from a seropositive host profoundly attenuates the infectivity (>104 fold) of homologous spirochetes within the tick vector without killing them. This dramatic neutralization of vector-borne spirochetes was not observed, however, when ticks and blood-meal hosts carried heterologous B. burgdorferi s.l. strains, or when mice lacking humoral immunity replaced wild-type mice as blood-meal hosts in similar experiments. Mechanistically, serum-mediated neutralization does not block induction of host-adapted OspC+ spirochetes during tick feeding, nor require tick midgut components. Significantly, this study demonstrates that strain-specific antibodies elicited by B. burgdorferi s.l. infection neutralize homologous bacteria within feeding ticks, before the Lyme disease spirochetes enter a host. The blood meal ingested from an infected host thereby prevents super-infection by homologous spirochetes, while facilitating transmission of heterologous B. burgdorferi s.l. strains. This finding suggests that Lyme disease spirochete diversity is stably maintained within endemic populations in local geographic regions through frequency-dependent selection of rare alleles of dominant polymorphic surface antigens.


Assuntos
Borrelia burgdorferi/patogenicidade , Vetores de Doenças , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Borrelia burgdorferi/isolamento & purificação , Humanos , Ixodes/crescimento & desenvolvimento , Doença de Lyme/sangue , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
5.
Mol Microbiol ; 108(1): 77-89, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363884

RESUMO

Leptospires and other members of the evolutionarily ancient phylum of Spirochaetes are bacteria often characterized by long, highly motile spiral- or wave-shaped cells. Morphology and motility are critical factors in spirochete physiology, contributing to the ability of these bacteria to successfully colonize diverse environments. However, the mechanisms conferring the helical structure of Leptospira spp. have yet to be fully elucidated. We have identified five Leptospira biflexa bactofilin proteins, a recently characterized protein family with cytoskeletal properties. These five bactofilins are conserved in all species of the Leptospiraceae, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility and a decreased ability to tolerate cell wall stressors. The change in the helical spacing, combined with the motility and cell wall integrity defects, showcases the intimate relationship and coevolution between shape and motility in these spirochetes.


Assuntos
Proteínas de Bactérias/fisiologia , Leptospira/citologia , Leptospira/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Evolução Biológica , Parede Celular/química , Parede Celular/metabolismo , Expressão Ectópica do Gene , Leptospira/genética , Pressão Osmótica , Filogenia , Plasmídeos , Deleção de Sequência
6.
Curr Top Microbiol Immunol ; 415: 63-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28864829

RESUMO

Borrelia burgdorferi is a symbiont of ticks of the Ixodes ricinus complex. These ticks serve as vectors to disseminate the spirochete to a variety of susceptible vertebrate hosts, which, in turn, act as reservoirs for naïve ticks to become infected, perpetuating the infectious life cycle of B. burgdorferi. The pivotal role of ticks in this life cycle and tick-spirochete interactions are the focus of this chapter. Here, we describe the challenging physiological environment that spirochetes encounter within Ixodes ticks, and the genetic factors that B. burgdorferi uses to successfully infect, persist, and be transmitted from the vector.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Animais , Humanos
7.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632088

RESUMO

The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations.IMPORTANCEB. burgdorferi persists in nature by cycling between ticks and vertebrates. Little is known about how the bacterium senses and adapts to each niche of the cycle. The present studies indicate that B. burgdorferi controls production of SpoVG and that this protein binds to specific sites of DNA and RNA in the genome and transcriptome, respectively. Altered expression of spoVG exerts effects on bacterial replication and other aspects of the spirochete's physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/crescimento & desenvolvimento , DNA Bacteriano/genética , Feminino , Glicerol/metabolismo , Humanos , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Óperon , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Carrapatos/microbiologia , Carrapatos/fisiologia
8.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315081

RESUMO

Lyme disease is the most widely reported vector-borne disease in the United States. Its incidence is rapidly increasing, and disease symptoms can be debilitating. The need to understand the biology of the disease agent, the spirochete Borrelia burgdorferi, is thus evermore pressing. Despite important advances in B. burgdorferi genetics, the array of molecular tools available for use in this organism remains limited, especially for cell biological studies. Here, we adapt a palette of bright and mostly monomeric fluorescent proteins for versatile use and multicolor imaging in B. burgdorferi We also characterize two novel antibiotic selection markers and establish the feasibility of their use in conjunction with extant markers. Last, we describe a set of promoters of low and intermediate strengths that allow fine-tuning of gene expression levels. These molecular tools complement and expand current experimental capabilities in B. burgdorferi, which will facilitate future investigation of this important human pathogen. To showcase the usefulness of these reagents, we used them to investigate the subcellular localization of BB0323, a B. burgdorferi lipoprotein essential for survival in the host and vector environments. We show that BB0323 accumulates at the cell poles and future division sites of B. burgdorferi cells, highlighting the complex subcellular organization of this spirochete.IMPORTANCE Genetic manipulation of the Lyme disease spirochete B. burgdorferi remains cumbersome, despite significant progress in the field. The scarcity of molecular reagents available for use in this pathogen has slowed research efforts to study its unusual biology. Of interest, B. burgdorferi displays complex cellular organization features that have yet to be understood. These include an unusual morphology and a highly fragmented genome, both of which are likely to play important roles in the bacterium's transmission, infectivity, and persistence. Here, we complement and expand the array of molecular tools available for use in B. burgdorferi by generating and characterizing multiple fluorescent proteins, antibiotic selection markers, and promoters of varied strengths. These tools will facilitate investigations in this important human pathogen, as exemplified by the polar and midcell localization of the cell envelope regulator BB0323, which we uncovered using these reagents.


Assuntos
Borrelia burgdorferi/genética , Marcadores Genéticos , Proteínas Luminescentes , Técnicas de Diagnóstico Molecular/métodos , Regiões Promotoras Genéticas/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/patogenicidade , DNA Bacteriano , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Flagelina/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Higromicina B , Lipoproteínas , Doença de Lyme/diagnóstico , Doença de Lyme/microbiologia , Nucleosídeos/genética , Transformação Genética
9.
Infect Immun ; 84(5): 1565-1573, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953324

RESUMO

Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization.


Assuntos
Antígenos de Bactérias/metabolismo , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/metabolismo , Borrelia burgdorferi/crescimento & desenvolvimento , Lipoproteínas/metabolismo , Carrapatos/microbiologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Borrelia burgdorferi/imunologia , Deleção de Genes , Expressão Gênica , Lipoproteínas/genética , Camundongos , Camundongos SCID , Recombinação Genética
10.
PLoS Pathog ; 10(6): e1004260, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24950221

RESUMO

Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable.Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pnc A gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice.Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. The bbk46 gene was dispensable for B. burgdorferi infection in mice. Our findings highlight the power of the IVET-based approach for identification of B. burgdorferi in vivo-expressed genes, which might not be discovered using other genome-wide gene expression methods. Further investigation of the novel in vivo-expressed candidate genes will contribute to advancing the understanding of molecular mechanisms of B.burgdorferi survival and pathogenicity in the mammalian host.


Assuntos
Borrelia burgdorferi/imunologia , Borrelia burgdorferi/patogenicidade , Doença de Lyme/imunologia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Animais , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Genótipo , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Fases de Leitura Aberta/genética , Fenótipo , Alinhamento de Sequência , Transcriptoma/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/imunologia
11.
Appl Environ Microbiol ; 82(4): 1183-1195, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655756

RESUMO

The saprophyte Leptospira biflexa is an excellent model for studying the physiology of the medically important Leptospira genus, the pathogenic members of which are more recalcitrant to genetic manipulation and have significantly slower in vitro growth. However, relatively little is known regarding the proteome of L. biflexa, limiting its utility as a model for some studies. Therefore, we have generated a proteomic map of both soluble and membrane-associated proteins of L. biflexa during exponential growth and in stationary phase. Using these data, we identified abundantly produced proteins in each cellular fraction and quantified the transcript levels from a subset of these genes using quantitative reverse transcription-PCR (RT-PCR). These proteins should prove useful as cellular markers and as controls for gene expression studies. We also observed a significant number of L. biflexa membrane-associated proteins with multiple isoforms, each having unique isoelectric focusing points. L. biflexa cell lysates were examined for several posttranslational modifications suggested by the protein patterns. Methylation and acetylation of lysine residues were predominately observed in the proteins of the membrane-associated fraction, while phosphorylation was detected mainly among soluble proteins. These three posttranslational modification systems appear to be conserved between the free-living species L. biflexa and the pathogenic species Leptospira interrogans, suggesting an important physiological advantage despite the varied life cycles of the different species.


Assuntos
Proteínas de Bactérias/metabolismo , Leptospira/fisiologia , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica , Perfilação da Expressão Gênica , Leptospira/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Infect Immun ; 83(12): 4800-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438790

RESUMO

Borrelia burgdorferi, a causative agent of Lyme borreliosis, is a zoonotic pathogen that survives in nutrient-limited environments within a tick, prior to transmission to its mammalian host. Survival under these prolonged nutrient-limited conditions is thought to be similar to survival during stationary phase, which is characterized by growth cessation and decreased protein production. Multiple ribosome-associated proteins are implicated in stationary-phase survival of Escherichia coli. These proteins include hibernation-promoting factor (HPF), which dimerizes ribosomes and prevents translation of mRNA. Bioinformatic analyses indicate that B. burgdorferi harbors an hpf homolog, the bb0449 gene. BB0449 protein secondary structure modeling also predicted HPF-like structure and function. However, BB0449 protein was not localized in the ribosome-associated protein fraction of in vitro-grown B. burgdorferi. In wild-type B. burgdorferi, bb0449 transcript and BB0449 protein levels are low during various growth phases. These results are inconsistent with patterns of synthesis of HPF-like proteins in other bacterial species. In addition, two independently derived bb0449 mutants successfully completed the mouse-tick infectious cycle, indicating that bb0449 is not required for prolonged survival in the nutrient-limited environment in the unfed tick or any other stage of infection by B. burgdorferi. We suggest either that BB0449 is associated with ribosomes under specific conditions not yet identified or that BB0449 of B. burgdorferi has a function other than ribosome conformation modulation.


Assuntos
Vetores Aracnídeos/microbiologia , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Regulação Bacteriana da Expressão Gênica , Ixodes/microbiologia , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/imunologia , Sequência de Bases , Borrelia burgdorferi/patogenicidade , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Hibernação/genética , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Doença de Lyme/transmissão , Camundongos , Viabilidade Microbiana , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Ribossômicas/imunologia , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Transcrição Gênica
13.
PLoS Pathog ; 9(8): e1003567, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009501

RESUMO

Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.


Assuntos
Proteínas de Bactérias/biossíntese , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Doença de Lyme/metabolismo , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Feminino , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Fatores de Virulência/genética
14.
Appl Environ Microbiol ; 81(3): 1038-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452278

RESUMO

Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.


Assuntos
Borrelia burgdorferi/genética , Teste de Complementação Genética , Vetores Genéticos , Genética Microbiana/métodos , Biologia Molecular/métodos , Plasmídeos , Animais , Borrelia burgdorferi/crescimento & desenvolvimento , Modelos Animais de Doenças , Instabilidade Genômica , Doença de Lyme/microbiologia , Camundongos
15.
Mol Microbiol ; 89(2): 216-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23692497

RESUMO

Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/patogenicidade , Lipoproteínas/metabolismo , Animais , Variação Antigênica , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Lipoproteínas/genética , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Mutação
16.
Infect Immun ; 81(8): 2986-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753630

RESUMO

Borrelia burgdorferi, the bacterium that causes Lyme disease, has a unique segmented genome consisting of numerous linear and circular plasmids and a linear chromosome. Many of these genetic elements have been found to encode factors critical for B. burgdorferi to complete the infectious cycle. However, several plasmids remain poorly characterized, and their roles during infection with B. burgdorferi have not been elucidated. To more fully characterize the role of one of the four 28-kb linear plasmids, lp28-3, we generated strains specifically lacking lp28-3 and assayed the contribution of genes carried by lp28-3 to B. burgdorferi infection. We found that lp28-3 does not carry any genes that are strictly required for infection of a mouse or tick and that lp28-3-deficient spirochetes are competent at causing a disseminated infection. Interestingly, spirochetes containing lp28-3 were at a selective advantage compared to lp28-3-deficient spirochetes when coinjected into a mouse, and this advantage was reflected in the population of spirochetes acquired by feeding ticks. Our data demonstrate that genes carried by lp28-3, although not essential, contribute to the fitness of B. burgdorferi during infection.


Assuntos
Infecções por Borrelia/genética , Borrelia burgdorferi/genética , Aptidão Genética/genética , Plasmídeos/genética , Animais , Southern Blotting , Modelos Animais de Doenças , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seleção Genética/genética , Carrapatos/parasitologia
17.
Infect Immun ; 81(6): 2012-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529620

RESUMO

The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Movimento/fisiologia , Animais , Borrelia burgdorferi/citologia , Borrelia burgdorferi/genética , Flagelina/genética , Flagelina/metabolismo , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Mutação , Ninfa/microbiologia
18.
Mol Microbiol ; 85(6): 1105-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22758390

RESUMO

P66 is a Borrelia burgdorferi surface protein with ß3 integrin binding and channel forming activities. In this study, the role of P66 in mammalian and tick infection was examined. B. burgdorferiΔp66 strains were not infectious in wild-type, TLR2⁻/⁻- or MyD88⁻/⁻-deficient mice. Strains with p66 restored to the chromosome restored near wild-type infectivity, while complementation with p66 on a shuttle vector did not restore infectivity. Δp66 mutants are cleared quickly from the site of inoculation, but analyses of cytokine expression and cellular infiltrates at the site of inoculation did not reveal a specific mechanism of clearance. The defect in these mutants cannot be attributed to nutrient limitation or an inability to adapt to the host environment in vivo as Δp66 bacteria were able to survive as well as wild type in dialysis membrane chambers in the rat peritoneum. Δp66 bacteria were able to survive in ticks through the larva to nymph moult, but were non-infectious in mice when delivered by tick bite. Independent lines of evidence do not support any increased susceptibility of the Δp66 strains to factors in mammalian blood. This study is the first to define a B. burgdorferi adhesin as essential for mammalian, but not tick infection.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/patogenicidade , Integrina beta3/metabolismo , Porinas/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Porinas/genética , Ligação Proteica , Ratos , Carrapatos , Virulência , Fatores de Virulência/genética
19.
Microbiol Spectr ; 11(3): e0047723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37010416

RESUMO

The highly segmented genome of Borrelia burgdorferi, the tick-borne bacterium that causes Lyme disease, is composed of a linear chromosome and more than 20 co-existing endogenous plasmids. Many plasmid-borne genes are unique to B. burgdorferi and some have been shown to provide essential functions at discrete points of the infectious cycle between a tick vector and rodent host. In this study, we investigated the role of bba40, a highly conserved and differentially expressed gene on a ubiquitous linear plasmid of B. burgdorferi. In a prior genome-wide analysis, inactivation of bba40 by transposon insertion was linked with a noninfectious phenotype in mice, suggesting that conservation of the gene in the Lyme disease spirochete reflected a critical function of the encoded protein. To address this hypothesis, we moved the bba40::Tn allele into a similar wild-type background and compared the phenotypes of isogenic wild-type, mutant and complemented strains in vitro and throughout the in vivo mouse/tick infectious cycle. In contrast to the previous study, we identified no defect in the ability of the bba40 mutant to colonize the tick vector or murine host, or to be efficiently transmitted between them. We conclude that bba40 joins a growing list of unique, highly conserved, yet fully dispensable plasmid-borne genes of the Lyme disease spirochete. We infer that the experimental infectious cycle, while including the tick vector and murine host, lacks key selective forces imposed during the natural enzootic cycle. IMPORTANCE The key finding of this study contradicts our premise that the ubiquitous presence and strict sequence conservation of a unique gene in the Lyme disease spirochete, Borrelia burgdorferi, reflect a critical role in either the murine host or tick vector in which these bacteria are maintained in nature. Instead, the outcome of this investigation illustrates the inadequate nature of the experimental infectious cycle currently employed in the laboratory to fully model the enzootic cycle of the Lyme disease spirochete. This study also highlights the importance of complementation for accurate interpretation of mutant phenotypes in genetic studies of Borrelia burgdorferi.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Borrelia burgdorferi/genética , Plasmídeos/genética , Ixodes/genética , Ixodes/microbiologia
20.
Nat Commun ; 14(1): 198, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639656

RESUMO

The alternative sigma factor RpoS plays a central role in the critical host-adaptive response of the Lyme disease spirochete, Borrelia burgdorferi. We previously identified bbd18 as a negative regulator of RpoS but could not inactivate bbd18 in wild-type spirochetes. In the current study we employed an inducible bbd18 gene to demonstrate the essential nature of BBD18 for viability of wild-type spirochetes in vitro and at a unique point in vivo. Transcriptomic analyses of BBD18-depleted cells demonstrated global induction of RpoS-dependent genes prior to lysis, with the absolute requirement for BBD18, both in vitro and in vivo, circumvented by deletion of rpoS. The increased expression of plasmid prophage genes and the presence of phage particles in the supernatants of lysing cultures indicate that RpoS regulates phage lysis-lysogeny decisions. Through this work we identify a mechanistic link between endogenous prophages and the RpoS-dependent adaptive response of the Lyme disease spirochete.


Assuntos
Borrelia burgdorferi , Prófagos , Carrapatos , Animais , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Fator sigma/metabolismo , Carrapatos/microbiologia , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA