Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38569653

RESUMO

Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. ONE-SENTENCE SUMMARY: This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.


Assuntos
Actinobacteria , Produtos Biológicos , Descoberta de Drogas , Redes Reguladoras de Genes , Actinobacteria/metabolismo , Actinobacteria/genética , Produtos Biológicos/metabolismo , Vias Biossintéticas , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Plasmid ; 125: 102669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36572199

RESUMO

A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.


Assuntos
Clostridioides difficile , Humanos , Plasmídeos/genética , Clostridioides difficile/genética , Clostridioides/genética , Virulência , Fatores de Virulência/genética , Antibacterianos
3.
Commun Chem ; 5(1): 14, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697563

RESUMO

Actinobacteria are a rich source of bioactive molecules, and genome sequencing has shown that the vast majority of their biosynthetic potential has yet to be explored. However, many of their biosynthetic gene clusters (BGCs) are poorly expressed in the laboratory, which prevents discovery of their cognate natural products. To exploit their full biosynthetic potential, better understanding of the signals that promote the expression of BGCs is needed. Here, we show that the human stress hormone epinephrine (adrenaline) elicits siderophore production by Actinobacteria. Catechol was established as the likely eliciting moiety, since similar responses were seen for catechol and for the catechol-containing molecules dopamine and catechin but not for related molecules. Exploration of the catechol-responsive strain Streptomyces sp. MBT84 using mass spectral networking revealed elicitation of a BGC that produces the angucycline glycosides aquayamycin, urdamycinone B and galtamycin C. Heterologous expression of the catechol-cleaving enzymes catechol 1,2-dioxygenase or catechol 2,3-dioxygenase counteracted the eliciting effect of catechol. Thus, our work identifies the ubiquitous catechol moiety as a novel elicitor of the expression of BGCs for specialized metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA