Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 167(2): 277-295, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37702109

RESUMO

Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.


Assuntos
Cobre , Ferredoxinas , Humanos , Cobre/farmacologia , Ferredoxinas/metabolismo , Ferredoxinas/farmacologia , Astrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Zinco/farmacologia , Neurônios/metabolismo , Células Cultivadas
2.
Proc Natl Acad Sci U S A ; 116(43): 21800-21811, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591195

RESUMO

The excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the brain expressed predominantly in astrocytes and at low levels in neurons and axonal terminals. EAAT2 expression is reduced in aging and sporadic Alzheimer's disease (AD) patients' brains. The role EAAT2 plays in cognitive aging and its associated mechanisms remains largely unknown. Here, we show that conditional deletion of astrocytic and neuronal EAAT2 results in age-related cognitive deficits. Astrocytic, but not neuronal EAAT2, deletion leads to early deficits in short-term memory and in spatial reference learning and long-term memory. Neuronal EAAT2 loss results in late-onset spatial reference long-term memory deficit. Neuronal EAAT2 deletion leads to dysregulation of the kynurenine pathway, and astrocytic EAAT2 deficiency results in dysfunction of innate and adaptive immune pathways, which correlate with cognitive decline. Astrocytic EAAT2 deficiency also shows transcriptomic overlaps with human aging and AD. Overall, the present study shows that in addition to the widely recognized astrocytic EAAT2, neuronal EAAT2 plays a role in hippocampus-dependent memory. Furthermore, the gene expression profiles associated with astrocytic and neuronal EAAT2 deletion are substantially different, with the former associated with inflammation and synaptic function similar to changes observed in human AD and gene expression changes associated with inflammation similar to the aging human brain.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/patologia , Transportador 2 de Aminoácido Excitatório/deficiência , Transtornos da Memória/patologia , Neurônios/metabolismo , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/genética , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/fisiologia , Humanos , Cinurenina/metabolismo , Masculino , Transtornos da Memória/genética , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
3.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30926746

RESUMO

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Ácido Aspártico/metabolismo , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Consumo de Oxigênio/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinaptossomos/metabolismo
4.
Ann Neurol ; 85(6): 921-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30937933

RESUMO

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count. ANN NEUROL 2019;85:921-926.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Transportador 2 de Aminoácido Excitatório/genética , Variação Genética/genética , Sequência de Aminoácidos , Ceftriaxona/uso terapêutico , Pré-Escolar , Epilepsia Generalizada/tratamento farmacológico , Transportador 2 de Aminoácido Excitatório/química , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Estrutura Secundária de Proteína
5.
Neurochem Res ; 45(6): 1420-1437, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144526

RESUMO

Expression of the glutamate transporter GLT-1 in neurons has been shown to be important for synaptic mitochondrial function in the cerebral cortex. Here we determined whether neuronal GLT-1 plays a similar role in the hippocampus and striatum, using conditional GLT-1 knockout mice in which GLT-1 was inactivated in neurons by expression of synapsin-Cre (synGLT-1 KO). Ex vivo 13C-labelling using [1,2-13C]acetate, representing astrocytic metabolism, yielded increased [4,5-13C]glutamate levels, suggesting increased astrocyte-neuron glutamine transfer, in the striatum but not in the hippocampus of the synGLT-1 KO. Moreover, aspartate concentrations were reduced - 38% compared to controls in the hippocampus and the striatum of the synGLT-1 KO. Mitochondria isolated from the hippocampus of synGLT-1 KO mice exhibited a lower oxygen consumption rate in the presence of oligomycin A, indicative of a decreased proton leak across the mitochondrial membrane, whereas the ATP production rate was unchanged. Electron microscopy revealed reduced mitochondrial inter-cristae distance within excitatory synaptic terminals in the hippocampus and striatum of the synGLT-1 KO. Finally, dilution of 13C-labelling originating from [U-13C]glucose, caused by metabolism of unlabelled glutamate, was reduced in hippocampal synGLT-1 KO synaptosomes, suggesting that neuronal GLT-1 provides glutamate for synaptic tricarboxylic acid cycle metabolism. Collectively, these data demonstrate an important role of neuronal expression of GLT-1 in synaptic mitochondrial metabolism in the forebrain.


Assuntos
Ácido Aspártico/metabolismo , Corpo Estriado/metabolismo , Transportador 2 de Aminoácido Excitatório/deficiência , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Sinapses/metabolismo , Animais , Corpo Estriado/ultraestrutura , Transportador 2 de Aminoácido Excitatório/genética , Hipocampo/ultraestrutura , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Sinapses/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 114(2): E209-E218, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28049831

RESUMO

Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.


Assuntos
Regeneração Nervosa , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/fisiologia , Retina/fisiologia , Zinco/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas de Transporte de Cátions , Quelantes/farmacologia , Etilaminas/farmacologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridinas/farmacologia , Ácidos Sulfanílicos/farmacologia
7.
J Neurosci ; 35(13): 5187-201, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834045

RESUMO

GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake.


Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Epilepsia/prevenção & controle , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Sinaptossomos/metabolismo , Animais , Astrócitos/ultraestrutura , Peso Corporal , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Eletroencefalografia , Epilepsia/mortalidade , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Lipossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo
8.
Neurogenetics ; 17(1): 11-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26395884

RESUMO

Mutations in the KCNA1 gene are known to cause episodic ataxia/myokymia syndrome type 1 (EA1). Here, we describe two families with unique presentations who were enrolled in an IRB-approved study, extensively phenotyped, and whole exome sequencing (WES) performed. Family 1 had a diagnosis of isolated cataplexy triggered by sudden physical exertion in multiple affected individuals with heterogeneous neurological findings. All enrolled affected members carried a KCNA1 c.941T>C (p.I314T) mutation. Family 2 had an 8-year-old patient with muscle spasms with rigidity for whom WES revealed a previously reported heterozygous missense mutation in KCNA1 c.677C>G (p.T226R), confirming the diagnosis of EA1 without ataxia. WES identified variants in KCNA1 that explain both phenotypes expanding the phenotypic spectrum of diseases associated with mutations of this gene. KCNA1 mutations should be considered in patients of all ages with episodic neurological phenotypes, even when ataxia is not present. This is an example of the power of genomic approaches to identify pathogenic mutations in unsuspected genes responsible for heterogeneous diseases.


Assuntos
Ataxia/genética , Cataplexia/genética , Canal de Potássio Kv1.1/genética , Mutação , Mioquimia/genética , Adolescente , Adulto , Criança , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Adulto Jovem
9.
Dent Traumatol ; 31(3): 243-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25771743

RESUMO

BACKGROUND AND AIM: Many studies have examined the nature of tissue formed in the canals of immature necrotic teeth, following revascularization in animals and humans. While speculations have been made that regeneration of the pulp tissue might take place in the canal, the tissue has been found to be cementum-like, bone-like, and periodontal ligament-like. The purpose of this study was to histologically examine the tissue in the root canals in immature dog teeth that had been artificially infected and then revascularized. METHODS: Two 4- to 5-month-old mongrel dogs with immature teeth were used in the study. In one dog, four maxillary and four mandibular anterior teeth, and in another dog, four maxillary and five mandibular anterior teeth were used in the experiment. Pulp infection was artificially induced in the immature teeth. Revascularization was performed on all teeth by disinfecting the root canals with sodium hypochlorite irrigation and triple antibiotic intracanal dressing, completed with induction of intracanal bleeding, and sealed with an MTA plug. The access cavity was restored with silver amalgam. The animals were sacrificed 3 months after revascularization procedures. The revascularized teeth and surrounding periodontal tissues were removed and prepared for histological examination. RESULTS: Besides cementum-like, bone-like, and periodontal ligament-like tissues formed in the canals, residual remaining pulp tissue was observed in two revascularized teeth. In four teeth, ingrowth of alveolar bone into the canals was seen; presence of bone in the root canals has the potential for ankylosis. CONCLUSIONS: Within the limitation of this study, it can be concluded that residual pulp tissue can remain in the canals after revascularization procedures of immature teeth with artificially induced pulp infection. This can lead to the misinterpretation that true pulpal regeneration has occurred. Ingrowth of apical bone into the root canals undergoing revascularization can interfere with normal tooth eruption if ankylosis occurs.


Assuntos
Apexificação/métodos , Necrose da Polpa Dentária/patologia , Necrose da Polpa Dentária/cirurgia , Neovascularização Fisiológica , Compostos de Alumínio/farmacologia , Animais , Compostos de Cálcio/farmacologia , Cavidade Pulpar/patologia , Cavidade Pulpar/cirurgia , Cães , Combinação de Medicamentos , Masculino , Óxidos/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Irrigantes do Canal Radicular/farmacologia , Silicatos/farmacologia , Hipoclorito de Sódio/farmacologia
10.
N Y State Dent J ; 81(5): 52-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26521329

RESUMO

This article demonstrates a methodological approach to diagnosing a periapical radiolucency that could not be diagnosed using only basic clinical and radiographic findings. The patient was a 59-year-old Hispanic female with a small tender mass on the lower gingiva associated with tooth #25. Radiographic appearance demonstrated a well-defined radiolucent lesion at the apices of the mandibular incisors. The patient had no significant medical history. Cone-beam computed tomography (CBCT) showed bony expansion of the buccal plate. Differential diagnosis included non-endodontic unilocular radiolucent lesions in the anterior mandibular region. Biopsy findings were consistent with periapical cemento-osseous dysplasia (PCOD). In conclusion, clinical appearance of PCOD varies from non-expansile and asymptomatic to being expansile and sometimes symptomatic. In the latter cases, it may be necessary to use additional diagnostic tools to confirm the diagnosis.


Assuntos
Cementoma/diagnóstico por imagem , Incisivo/diagnóstico por imagem , Neoplasias Mandibulares/diagnóstico por imagem , Doenças Periapicais/diagnóstico por imagem , Biópsia/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Cisto Radicular/diagnóstico por imagem , Ápice Dentário/diagnóstico por imagem
11.
Glia ; 62(11): 1790-815, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24687630

RESUMO

Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.


Assuntos
Leucoencefalopatias/etiologia , Leucoencefalopatias/patologia , Neuroglia/fisiologia , Nascimento Prematuro/fisiopatologia , Animais , Humanos , Bainha de Mielina/patologia , Neuroglia/patologia , Estresse Oxidativo/fisiologia , Receptores de Glutamato/metabolismo
12.
J Am Chem Soc ; 136(12): 4551-6, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24592866

RESUMO

Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington's disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes.


Assuntos
Cicloexilaminas/farmacologia , Doença de Huntington/tratamento farmacológico , Nefropatias/tratamento farmacológico , Leucomalácia Periventricular/tratamento farmacológico , Lipídeos de Membrana/metabolismo , Fenilenodiaminas/farmacologia , Morte Celular/efeitos dos fármacos , Cicloexilaminas/uso terapêutico , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Leucomalácia Periventricular/metabolismo , Leucomalácia Periventricular/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fenilenodiaminas/uso terapêutico
13.
Neurosci Lett ; 831: 137727, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38467270

RESUMO

Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP+ oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF1), which controls expression of MTs. MT1, MT2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in âˆ¼ 100% increase in free zinc in pre-oligodendrocytes but, paradoxically more modest âˆ¼ 60% increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.


Assuntos
Diferenciação Celular , Homeostase , Oligodendroglia , Zinco , Oligodendroglia/metabolismo , Homeostase/fisiologia , Animais , Zinco/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Fatores de Transcrição/metabolismo , Metalotioneína/metabolismo , Camundongos , Proteínas de Ligação a DNA/metabolismo , Células Cultivadas , Fator MTF-1 de Transcrição
14.
Eur J Neurosci ; 38(3): 2477-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23586612

RESUMO

Excitotoxicity is thought to be important in the pathogenesis of Huntington's disease (HD). Glutamate is the predominant excitatory neurotransmitter in the brain, and excess activation of glutamate receptors can cause neuronal dysfunction and death. Glutamate transporters regulate the extracellular concentration of glutamate. GLT-1 is the most abundant glutamate transporter, and accounts for most of the glutamate transport in the brain. Administration of ceftriaxone, an antibiotic that increases the functional expression of GLT-1, can improve the behavioral phenotype of the R6/2 mouse model of HD. To test the hypothesis that GLT-1 expression critically affects the HD disease process, we generated a novel mouse model that is heterozygous for the null allele of GLT-1 and carries the R6/2 transgene (double mutation). We demonstrated that the protein expression of total GLT-1, as well as two of its isoforms, is decreased within the cortex and striatum of 12-week-old R6/2 mice, and that the expression of EAAC1 was decreased in the striatum. Protein expression of GLT-1 was further decreased in the cortex and striatum of the double mutation mice compared with the R6/2 mice at 11 weeks. However, the effects of the R6/2 transgene on weight loss, accelerating rotarod, climbing and paw-clasping were not exacerbated in these double mutants. Na(+) -dependent glutamate uptake into synapatosomes isolated from the striatum and cortex of 11-week-old R6/2 mice was unchanged compared with controls. These results suggest that changes in GLT-1 expression or function per se are unlikely to potentiate or ameliorate the progression of HD.


Assuntos
Progressão da Doença , Transportador 2 de Aminoácido Excitatório/metabolismo , Doença de Huntington/metabolismo , Animais , Comportamento Animal , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura
15.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546881

RESUMO

Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.

16.
Front Cell Neurosci ; 16: 905299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722615

RESUMO

The sodium-dependent glutamate transporter GLT-1 (EAAT2, SLC1A2) has been well-described as an important regulator of extracellular glutamate homeostasis in the central nervous system (CNS), a function that is performed mainly through its presence on astrocytes. There is, however, increasing evidence for the expression of GLT-1 in CNS cells other than astrocytes and in functional roles that are mediated by mechanisms downstream of glutamate uptake. In this context, GLT-1 expression has been reported for both neurons and oligodendrocytes (OLGs), and neuronal presynaptic presence of GLT-1 has been implicated in the regulation of glutamate uptake, gene expression, and mitochondrial function. Much less is currently known about the functional roles of GLT-1 expressed by OLGs. The data presented here provide first evidence that GLT-1 expressed by maturing OLGs contributes to the modulation of developmental myelination in the CNS. More specifically, using inducible and conditional knockout mice in which GLT-1 was deleted in maturing OLGs during a peak period of myelination (between 2 and 4 weeks of age) revealed hypomyelinated characteristics in the corpus callosum of preferentially male mice. These characteristics included reduced percentages of smaller diameter myelinated axons and reduced myelin thickness. Interestingly, this myelination phenotype was not found to be associated with major changes in myelin gene expression. Taken together, the data presented here demonstrate that GLT-1 expressed by maturing OLGs is involved in the modulation of the morphological aspects associated with CNS myelination in at least the corpus callosum and during a developmental window that appears of particular vulnerability in males compared to females.

17.
Front Cell Neurosci ; 15: 666798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935656

RESUMO

Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.

18.
Neurochem Int ; 144: 104896, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159978

RESUMO

Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.


Assuntos
Comportamento Aditivo/metabolismo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comportamento Aditivo/psicologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
19.
Neuropharmacology ; 196: 108719, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273389

RESUMO

Glutamate is the primary excitatory neurotransmitter of the brain. Cellular homeostasis of glutamate is of paramount importance for normal brain function and relies on an intricate metabolic collaboration between neurons and astrocytes. Glutamate is extensively recycled between neurons and astrocytes in a process known as the glutamate-glutamine cycle. The recycling of glutamate is closely linked to brain energy metabolism and is essential to sustain glutamatergic neurotransmission. However, a considerable amount of glutamate is also metabolized and serves as a metabolic hub connecting glucose and amino acid metabolism in both neurons and astrocytes. Disruptions in glutamate clearance, leading to neuronal overstimulation and excitotoxicity, have been implicated in several neurodegenerative diseases. Furthermore, the link between brain energy homeostasis and glutamate metabolism is gaining attention in several neurological conditions. In this review, we provide an overview of the dynamics of synaptic glutamate homeostasis and the underlying metabolic processes with a cellular focus on neurons and astrocytes. In particular, we review the recently discovered role of neuronal glutamate uptake in synaptic glutamate homeostasis and discuss current advances in cellular glutamate metabolism in the context of Alzheimer's disease and Huntington's disease. Understanding the intricate regulation of glutamate-dependent metabolic processes at the synapse will not only increase our insight into the metabolic mechanisms of glutamate homeostasis, but may reveal new metabolic targets to ameliorate neurodegeneration.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Doença de Huntington/metabolismo
20.
J Neurosci ; 29(24): 7898-908, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19535601

RESUMO

Glutamate released from synaptic vesicles mediates excitatory neurotransmission by stimulating glutamate receptors. Glutamate transporters maintain low synaptic glutamate levels critical for this process, a role primarily attributed to astrocytes. Recently, vesicular release of glutamate from unmyelinated axons in the rat corpus callosum has been shown to elicit AMPA receptor-mediated currents in glial progenitor cells. Glutamate transporters are the only mechanism of glutamate clearance, yet very little is known about the role of glutamate transporters in normal development of oligodendrocytes (OLs) or in excitotoxic injury to OLs. We found that OLs in culture are capable of sodium-dependent glutamate uptake with a K(m) of 10 +/- 2 microm and a V(max) of 2.6, 5.0, and 3.8 nmol x min(-1) x mg(-1) for preoligodendrocytes, immature, and mature OLs, respectively. Surprisingly, EAAC1, thought to be exclusively a neuronal transporter, contributes more to [(3)H]l-glutamate uptake in OLs than GLT1 or GLAST. These data suggest that glutamate transporters on oligodendrocytes may serve a critical role in maintaining glutamate homeostasis at a time when unmyelinated callosal axons are engaging in glutamatergic signaling with glial progenitors. Furthermore, GLT1 was significantly increased in cultured mature OLs contrary to in vivo data in which we have shown that, although GLT1 is present on developing OLs when unmyelinated axons are prevalent in the developing rat corpus callosum, after myelination, GLT1 is not expressed on mature OLs. The absence of GLT1 in mature OLs in the rat corpus callosum and its presence in mature rat cultured OLs may indicate that a signaling process in vivo is not activated in vitro.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Transportador 2 de Aminoácido Excitatório/fisiologia , Transportador 3 de Aminoácido Excitatório/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácido Glutâmico/metabolismo , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Benzodiazepinas/farmacologia , Bicuculina/farmacologia , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Antagonistas GABAérgicos/farmacologia , Gangliosídeos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Antígenos O/metabolismo , Técnicas de Patch-Clamp/métodos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Gravidez , Quinoxalinas/farmacologia , Ratos , Ratos Long-Evans , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA