RESUMO
GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.
Assuntos
Sistema Nervoso Central , Receptores de Glutamato , Humanos , Sistema Nervoso Central/metabolismo , Mutação , Domínios Proteicos , Receptores de Glutamato/metabolismoRESUMO
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Proteômica/métodos , Substância Negra/metabolismo , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismoRESUMO
BACKGROUND: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder often misdiagnosed as Parkinson's Disease (PD) due to shared symptoms. PSP is characterized by the accumulation of tau protein in specific brain regions, leading to loss of balance, gaze impairment, and dementia. Diagnosing PSP is challenging, and there is a significant demand for reliable biomarkers. Existing biomarkers, including tau protein and neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF), show inconsistencies in distinguishing PSP from other neurodegenerative disorders. Therefore, the development of new biomarkers for PSP is imperative. METHODS: We conducted an extensive proteome analysis of CSF samples from 40 PSP patients, 40 PD patients, and 40 healthy controls (HC) using tandem mass tag-based quantification. Mass spectrometry analysis of 120 CSF samples was performed across 13 batches of 11-plex TMT experiments, with data normalization to reduce batch effects. Pathway, interactome, cell-type-specific enrichment, and bootstrap receiver operating characteristic analyses were performed to identify key candidate biomarkers. RESULTS: We identified a total of 3,653 unique proteins. Our analysis revealed 190, 152, and 247 differentially expressed proteins in comparisons of PSP vs. HC, PSP vs. PD, and PSP vs. both PD and HC, respectively. Gene set enrichment and interactome analysis of the differentially expressed proteins in PSP CSF showed their involvement in cell adhesion, cholesterol metabolism, and glycan biosynthesis. Cell-type enrichment analysis indicated a predominance of neuronally-derived proteins among the differentially expressed proteins. The potential biomarker classification performance demonstrated that ATP6AP2 (reduced in PSP) had the highest AUC (0.922), followed by NEFM, EFEMP2, LAMP2, CHST12, FAT2, B4GALT1, LCAT, CBLN3, FSTL5, ATP6AP1, and GGH. CONCLUSION: Biomarker candidate proteins ATP6AP2, NEFM, and CHI3L1 were identified as key differentiators of PSP from the other groups. This study represents the first large-scale use of mass spectrometry-based proteome analysis to identify cerebrospinal fluid (CSF) biomarkers specific to progressive supranuclear palsy (PSP) that can differentiate it from Parkinson's disease (PD) and healthy controls. Our findings lay a crucial foundation for the development and validation of reliable biomarkers, which will enhance diagnostic accuracy and facilitate early detection of PSP.
RESUMO
BACKGROUND: Progressive loss of standing balance is a feature of Friedreich's ataxia (FRDA). OBJECTIVES: This study aimed to identify standing balance conditions and digital postural sway measures that best discriminate between FRDA and healthy controls (HC). We assessed test-retest reliability and correlations between sway measures and clinical scores. METHODS: Twenty-eight subjects with FRDA and 20 HC completed six standing conditions: feet apart, feet together, and feet tandem, both with eyes opened (EO) and eyes closed. Sway was measured using a wearable sensor on the lumbar spine for 30 seconds. Test completion rate, test-retest reliability with intraclass correlation coefficients, and areas under the receiver operating characteristic curves (AUCs) for each measure were compared to identify distinguishable FRDA sway characteristics from HC. Pearson correlations were used to evaluate the relationships between discriminative measures and clinical scores. RESULTS: Three of the six standing conditions had completion rates over 70%. Of these three conditions, natural stance and feet together with EO showed the greatest completion rates. All six of the sway measures' mean values were significantly different between FRDA and HC. Four of these six measures discriminated between groups with >0.9 AUC in all three conditions. The Friedreich Ataxia Rating Scale Upright Stability and Total scores correlated with sway measures with P-values <0.05 and r-values (0.63-0.86) and (0.65-0.81), respectively. CONCLUSION: Digital postural sway measures using wearable sensors are discriminative and reliable for assessing standing balance in individuals with FRDA. Natural stance and feet together stance with EO conditions suggest use in clinical trials for FRDA. © 2024 International Parkinson and Movement Disorder Society.
Assuntos
Ataxia de Friedreich , Equilíbrio Postural , Humanos , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/diagnóstico , Equilíbrio Postural/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem , Posição OrtostáticaRESUMO
BACKGROUND: Maintaining balance is crucial for independence and quality of life. Loss of balance is a hallmark of spinocerebellar ataxia (SCA). OBJECTIVE: The aim of this study was to identify which standing balance conditions and digital measures of body sway were most discriminative, reliable, and valid for quantifying balance in SCA. METHODS: Fifty-three people with SCA (13 SCA1, 13 SCA2, 14 SCA3, and 13 SCA6) and Scale for Assessment and Rating of Ataxia (SARA) scores 9.28 ± 4.36 and 31 healthy controls were recruited. Subjects stood in six test conditions (natural stance, feet together and tandem, each with eyes open [EO] and eyes closed [EC]) with an inertial sensor on their lower back for 30 seconds (×2). We compared test completion rate, test-retest reliability, and areas under the receiver operating characteristic curve (AUC) for seven digital sway measures. Pearson's correlations related sway with the SARA and the Patient-Reported Outcome Measure of Ataxia (PROM ataxia). RESULTS: Most individuals with SCA (85%-100%) could stand for 30 seconds with natural stance EO or EC, and with feet together EO. The most discriminative digital sway measures (path length, range, area, and root mean square) from the two most reliable and discriminative conditions (natural stance EC and feet together EO) showed intraclass correlation coefficients from 0.70 to 0.91 and AUCs from 0.83 to 0.93. Correlations of sway with SARA were significant (maximum r = 0.65 and 0.73). Correlations with PROM ataxia were mild to moderate (maximum r = 0.56 and 0.34). CONCLUSION: Inertial sensor measures of extent of postural sway in conditions of natural stance EC and feet together stance EO were discriminative, reliable, and valid for monitoring SCA. © 2024 International Parkinson and Movement Disorder Society.
Assuntos
Equilíbrio Postural , Ataxias Espinocerebelares , Humanos , Equilíbrio Postural/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/diagnóstico , Adulto , Idoso , Reprodutibilidade dos Testes , Índice de Gravidade de DoençaRESUMO
The functional Scale for the Assessment and Rating of Ataxia (f-SARA) assesses Gait, Stance, Sitting, and Speech. It was developed as a potentially clinically meaningful measure of spinocerebellar ataxia (SCA) progression for clinical trial use. Here, we evaluated content validity of the f-SARA. Qualitative interviews were conducted among individuals with SCA1 (n = 1) and SCA3 (n = 6) and healthcare professionals (HCPs) with SCA expertise (USA, n = 5; Europe, n = 3). Interviews evaluated symptoms and signs of SCA and relevance of f-SARA concepts for SCA. HCP cognitive debriefing was conducted. Interviews were recorded, transcribed, coded, and analyzed by ATLAS.TI software. Individuals with SCA1 and 3 reported 85 symptoms, signs, and impacts of SCA. All indicated difficulties with walking, stance, balance, speech, fatigue, emotions, and work. All individuals with SCA1 and 3 considered Gait, Stance, and Speech relevant f-SARA concepts; 3 considered Sitting relevant (42.9%). All HCPs considered Gait and Speech relevant; 5 (62.5%) indicated Stance was relevant. Sitting was considered a late-stage disease indicator. Most HCPs suggested inclusion of appendicular items would enhance clinical relevance. Cognitive debriefing supported clarity and comprehension of f-SARA. Maintaining current abilities on f-SARA items for 1 year was considered meaningful for most individuals with SCA1 and 3. All HCPs considered meaningful changes as stability in f-SARA score over 1-2 years, 1-2-point change in total f-SARA score, and deviation from natural history. These results support content validity of f-SARA for assessing SCA disease progression in clinical trials.
Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Índice de Gravidade de Doença , Reprodutibilidade dos Testes , Idoso , Marcha/fisiologia , Progressão da DoençaRESUMO
The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.
Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/psicologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Função Executiva/fisiologia , Testes Neuropsicológicos , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Estudos de CoortesRESUMO
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Assuntos
Doença de Parkinson , Humanos , Mutação , Neuroproteção , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genéticaRESUMO
Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.
Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Gravidade do Paciente , Progressão da DoençaRESUMO
BACKGROUND: Pathogenic leucine-rich repeat kinase 2 LRRK2 mutations may increase LRRK2 kinase activity and Rab substrate phosphorylation. Genetic association studies link variation in LRRK2 to idiopathic Parkinson disease (iPD) risk. OBJECTIVES: Through measurements of the LRRK2 kinase substrate pT73-Rab10 in urinary extracellular vesicles, this study seeks to understand how LRRK2 kinase activity might change with iPD progression. METHODS: Using an immunoblotting approach validated in LRRK2 transgenic mice, the ratio of pT73-Rab10 to total Rab10 protein was measured in extracellular vesicles from a cross-section of G2019S LRRK2 mutation carriers (N = 45 participants) as well as 485 urine samples from a novel longitudinal cohort of iPD and controls (N = 85 participants). Generalized estimating equations were used to conduct analyses with commonly used clinical scales. RESULTS: Although the G2019S LRRK2 mutation did not increase pT73-Rab10 levels, the ratio of pT73-Rab10 to total Rab10 nominally increased over baseline in iPD urine vesicle samples with time, but did not increase in age-matched controls (1.34-fold vs. 1.05-fold, 95% confidence interval [CI], 0.004-0.56; P = 0.046; Welch's t test). Effect estimates adjusting for sex, age, disease duration, diagnosis, and baseline clinical scores identified increasing total Movement Disorder Society-Sponsored Revision of the Unified (MDS-UPDRS) scores (ß = 0.77; CI, 0.52-1.01; P = 0.0001) with each fold increase of pT73-Rab10 to total Rab10. Lower Montreal Cognitive Assessment (MoCA) score in iPD is also associated with increased pT73-Rab10. CONCLUSIONS: These results provide initial insights into peripheral LRRK2-dependent Rab phosphorylation, measured in biobanked urine, where higher levels of pT73-Rab10 are associated with worse disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/urinaRESUMO
Semi-structured interviews of patient accounts and caregiver, or informant, perspectives are a beneficial resource for patients suffering from diseases with complex symptomatology, such as cerebellar ataxia. The aim of this study was to identify, quantify, and compare the ways in which cerebellar ataxia patients' and informants' quality of life had changed as a result of living with ataxia. Using a semi-structured interview, responses were collected from patients and informants regarding motor, cognitive, and psychosocial variables. Responses were also collected from patients and informants to open-ended questions that were subsequently categorized into 15 quality of life themes that best represented changes experienced by the patients and informants. Ataxia patients and informants agreed as to the severity of posture/gait, daily activities/fine motor tasks, speech/feeding/swallowing, and oculomotor/vision impairment. It was also demonstrated that severity ratings for specific motor-related functions strongly correlated with corresponding functions within the International Cooperative Ataxia Rating Scale (ICARS), and that this interview identified frequency associations between motor impairments and specific psychosocial difficulties, which could be useful for prognostic purposes. Overall, the information obtained from this study characterized the symptoms and challenges to ataxia patients and their caregivers, which could serve as a useful educational resource for those affected by ataxia, clinicians, and researchers.
Assuntos
Ataxia Cerebelar , Ataxia , Ataxia Cerebelar/diagnóstico , Marcha/fisiologia , Humanos , Qualidade de Vida , AutorrelatoRESUMO
There is a need for targeted analysis of biological fluids for diagnosis, prognosis, or monitoring the progression of diseases. Cerebrospinal fluid (CSF) and serum have been widely used for the development of protein analysis for neurodegenerative diseases and other diseases, respectively. Recently, data-independent acquisition (DIA) mass spectrometry (MS) has been developed to increase the throughput over data-dependent acquisition (DDA) on screening of a large number of samples and discovery of candidate targets. When it comes to target validation, the analytical performance of targeted analysis is critical. However, the inter- and intralaboratory analytical performances of the DIA-MS for targeted proteomic analysis of CSF and serum samples have not yet been investigated. In this study, we showed that the DIA-MS approach allowed us to identify and quantify 1732 CSF and 424 serum proteins, with 90% of proteins identified and quantified in at least 50% of DIA-MS runs. To evaluate the sensitivity, linearity, and dynamic range of the DIA approach, we included the stable isotope-labeled (SI) peptides into CSF and serum samples with serial dilutions. The lower limit of quantification (LLOQ) of peptides was 0.1-0.5 fmol, and the dynamic range was over 3.53 orders of magnitude, with excellent linearity (r2 < 0.978) in CSF and serum samples. Finally, the reproducibility of the DIA-MS approach was evaluated using entire proteins identified in CSF and serum samples. The intralaboratory three replicate results showed reliable reproducibility with 12.5 and 17.3% of the median coefficient of variation (CV) in both CSF and serum matrices, whereas the median CVs of interlaboratory three replicates were 23.8 and 32.0% in CSF and serum samples, respectively. The comparison of the quantitative result between replicates showed close similarity at intra- and interlaboratories with a median Pearson correlation value of >0.98 in CSF and serum, respectively. In conclusion, we demonstrate the capability of the DIA approach as a targeted proteomic analysis for candidate proteins from CSF and serum samples.
Assuntos
Proteínas do Líquido Cefalorraquidiano , Proteômica , Espectrometria de Massas , Peptídeos , Proteoma , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Quantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. OBJECTIVES: The aim of this study was to identify a set of gait measures from body-worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age-matched, healthy control subjects (HC) and determine how these measures relate to disease severity. METHODS: One hundred and sixty-three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2-minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia. RESULTS: Increased gait variability was the most discriminative gait feature of SCA; toe-out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double-support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively). CONCLUSIONS: Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Transtornos Neurológicos da Marcha , Ataxias Espinocerebelares , Dispositivos Eletrônicos Vestíveis , Marcha , Humanos , Ataxias Espinocerebelares/diagnóstico , CaminhadaRESUMO
While cerebellar ataxia (CA) is a neurodegenerative disease known for motor impairment, changes in mood have also been reported. A full account of neuropsychiatric symptomology in CA may guide improvements in treatment regimes, measure the presence and severity of sub-clinical neuropsychiatric disturbance symptomology in CA, and compare patient versus informant symptom recognition. Neuropsychiatric phenomena were gathered from CA patients with genetic and unknown etiologies and their informants (e.g., spouse or parent). Information was obtained from in-person interviews and the Center for Epidemiologic Studies Depression Scale. Responses were converted to the Neuropsychiatric Inventory-Questionnaire (NPI-Q) scores by consensus ratings. Patient NPI-Q scores were evaluated for symptom prevalence and severity relative to those obtained from healthy controls. Patient-informant NPI-Q score disagreements were evaluated. In this cohort, 95% of patients presented with at least one neuropsychiatric symptom and 51% of patients with three or more symptoms. The most common symptoms were anxiety, depression, nighttime behaviors (e.g., interrupted sleep), irritability, disinhibition, abnormal appetite, and agitation. The prevalence of these neuropsychiatric symptoms was uniform across patients with genetic versus unknown etiologies. Patient and informant symptom report disagreements reflected that patients noted sleep impairment and depression, while informants noted irritability and agitation. Neuropsychiatric disturbance is highly prevalent in patients with CA and contributes to the phenomenology of CA, regardless of etiology. Clinicians should monitor psychiatric health in their CA patients, considering that supplemental information from informants can help gauge the impact on family members and caregivers.
Assuntos
Ataxia Cerebelar/complicações , Transtornos Mentais/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The cerebellum recognizes sequences from prior experiences and uses this information to generate internal models that predict future outcomes in a feedforward manner [Front Hum Neurosci 8: 475, 2014; Cortex 47: 137-44, 2011; Cerebellum 7: 611-5, 2008; J Neurosci 26: 9107-16, 2006]. This process has been well documented in the motor domain, but the cerebellum's role in cognitive sequencing, within the context of implicit versus explicit processes, is not well characterized. In this study, we tested individuals with cerebellar ataxia and healthy controls to clarify the role of the cerebellum sequencing using variations on implicit versus explicit and motor versus cognitive demands across five experiments. Converging results across these studies suggest that cerebellar feedforward mechanisms may be necessary for sequencing in the implicit domain only. In the ataxia group, rhythmic tapping, rate of motor learning, and implicit sequence learning were impaired. However, for cognitive sequencing that could be accomplished using explicit strategies, the cerebellar group performed normally, as though they shifted to extra-cerebellar mechanisms to compensate. For example, when cognitive and motor functions relied on cerebellar function simultaneously, the ataxia group's motor function was unaffected, in contrast to that of controls whose motor performance declined as a function of cognitive load. These findings indicated that the cerebellum is not critical for all forms of sequencing per se. Instead, it plays a fundamental role for sequencing within the implicit domain, whether functions are motor or cognitive. Moreover, individuals with cerebellar ataxia are generally able to compensate for cognitive sequencing when explicit strategies are available in order to preserve resources for motor function.
Assuntos
Ataxia Cerebelar/fisiopatologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: The pathological hallmarks of Parkinson's disease include intraneuronal Lewy bodies, neuronal loss, and gliosis. We aim to correlate Parkinson's disease neuropsychiatric symptoms, (e.g., depression, psychosis, and anxiety) with the severity of neuropathology in the substantia nigra and locus coeruleus. METHODS: The brains of 175 participants with a primary pathologic diagnosis of Parkinson's disease were analyzed semi-quantitatively to ascertain the burden of neuronal loss and gliosis and Lewy body pathology within the locus coeruleus and substantia nigra. Participants' history of anxiety, depression, and psychosis were determined using a chart-extracted medical history or record of formal psychiatric evaluation. RESULTS: Of the sample, 56% (nâ¯=â¯98), 50% (nâ¯=â¯88), and 31.25% (nâ¯=â¯55) of subjects had a diagnosis of psychosis, depression, and anxiety, respectively. Psychosis (χ2â¯=â¯7.1, p = 0.008, dfâ¯=â¯1) and depression (χ2â¯=â¯7.2, p = 0.007, dfâ¯=â¯1) were associated with severe neuronal loss and gliosis in the substantia nigra but not in the locus coeruleus. No association was observed between anxiety and neuronal loss and gliosis in either region. No neuropsychiatric symptoms were associated with Lewy body score. After controlling for disease duration and dementia, psychosis (odds ratio [OR]: 3.1, 95% confidence interval [CI]: 1.5-6.4, χ2â¯=â¯9.4, p = 0.012, dfâ¯=â¯1) and depression (OR: 2.6, 95% CI: 1.3-5.0, χ2â¯=â¯7.9, p = 0.005, dfâ¯=â¯1) remained associated with severe neuronal loss and gliosis in the substantia nigra. CONCLUSION: These results suggest that psychosis and depression in Parkinson's disease are associated with the underlying neurodegenerative process and demonstrate that cell loss and gliosis may be a better marker of neuropsychiatric symptoms than Lewy body pathology.
Assuntos
Doença de Parkinson , Transtornos Psicóticos , Tronco Encefálico , Depressão/complicações , Humanos , Corpos de Lewy , Doença de Parkinson/complicações , Transtornos Psicóticos/complicaçõesRESUMO
Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.
Assuntos
Catepsina B/genética , Glucosilceramidase/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Penetrância , alfa-Sinucleína/genética , Idade de Início , Estudos de Casos e Controles , Catepsina B/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Glucosilceramidase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Doença por Corpos de Lewy/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Fatores de Risco , Sequenciamento Completo do Genoma , alfa-Sinucleína/metabolismoRESUMO
Objective: To describe the impact a global pandemic has had on a teaching movement disorders program, as well as its subsequent transition to telemedicine. Methods: In the midst of the coronavirus disease 2019 (COVID-19) pandemic, we transitioned our movement disorders fellowship program virtually over the course of a few days. Here we describe the parameters used for the telemedicine fellow supervised clinic visit over the course of 2 months. Fellow's input was obtained from a brief survey at the end of the experience. Faculty's experience was collected upon independent faculty discussions. We also summarize the challenges and advantages of this teaching experience and its downsides. Results: A total of 130 patients (102 follow-up and 28 new patients) were seen over 22 clinic days with any of our 3 fellows being supervised by 1 of the 6 attending physicians. The main challenges were related to technical difficulties and lack of portions of the examination such as tone, reflexes, and sensory testing. The main advantages were related to increased patient access and a decrease in scheduling barriers. The overall satisfaction with the experience of the fellows was positive (69%). Conclusions: This sample shows the feasibility (despite lack of prior experience) of virtual clinical supervision of movement disorders fellows for follow-up and new complex patient encounters. This novel method for movement disorders training has implications for training locally, nationally, and internationally. Limitations and possible future directions such as the inclusion of nonsynchronous recordings and devices for tone and balance testing are also discussed.
Assuntos
COVID-19 , Transtornos dos Movimentos , Telemedicina , Bolsas de Estudo , Humanos , Pandemias , SARS-CoV-2RESUMO
BACKGROUND: Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Biomarkers that can help monitor the progression of PD or response to disease-modifying agents will be invaluable in making appropriate therapeutic decisions. Further, biomarkers that could be used to distinguish PD from other related disorders with PD-like symptoms will be useful for accurate diagnosis and treatment. C-Abl tyrosine kinase is activated in PD resulting in increased phosphorylation of the tyrosine residue at position 39 (Y39) of α-synuclein (α-syn) (pY39 α-syn), which contributes to the death of dopaminergic neurons. Because pY39 α-syn may be pathogenic, monitoring pY39 α-syn could allow us to diagnose presymptomatic PD and help monitor disease progression and response to treatment. We sought to investigate if increased phosphorylation of pY39 α-syn can be detected in the cerebrospinal fluid (CSF) of PD patients by targeted mass spectrometry. METHODS: Here, we report a two-step enrichment method in which phosphotyrosine peptides were first enriched with an anti-phosphotyrosine antibody followed by a second round of enrichment by titanium dioxide (TiO2) beads to detect EGVLpYVGSK sequence derived from tyrosine 39 region of α- and ß-synuclein (αß-syn). Accurate quantification was achieved by adding a synthetic heavy version of pY39 αß-syn peptide before enzymatic digestion. RESULTS: Using the developed enrichment methods and optimized parallel reaction monitoring (PRM) assays, we detected pY39 αß-syn peptide in human CSF and demonstrated that the ratio of pY39 αß-syn to Y39 αß-syn was significantly increased in the CSF of patients with PD. CONCLUSIONS: We anticipate that this optimized two-step enrichment-based PRM detection method will help monitor c-Abl activation in PD patients and can also be used to quantify other phosphotyrosine peptides of low abundance in biological samples.