Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Genet ; 37(10): 1135-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16170314

RESUMO

The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.


Assuntos
Síndrome de Bardet-Biedl/patologia , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Polaridade Celular/genética , Cílios/química , Cóclea/patologia , Células Epiteliais/química , Pálpebras/fisiopatologia , Chaperoninas do Grupo II , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/análise , Defeitos do Tubo Neural/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Nat Genet ; 36(5): 462-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15107855

RESUMO

BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Microtúbulos/metabolismo , Proteínas/metabolismo , Animais , Apoptose , Autoantígenos , Síndrome de Bardet-Biedl/patologia , Células COS , Proteínas de Ciclo Celular/metabolismo , Centrossomo/patologia , Chlorocebus aethiops , Dineínas/metabolismo , Inativação Gênica , Células HeLa , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas Associadas aos Microtúbulos , Fragmentos de Peptídeos/imunologia , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Interferente Pequeno/farmacologia , Coelhos , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
3.
Nat Genet ; 36(9): 989-93, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314642

RESUMO

RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes. None of the approximately 50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment. We uncovered four different homozygous substitutions in ARL6 in four unrelated families affected with Bardet-Biedl syndrome, two of which disrupt a threonine residue important for GTP binding and function of several related small GTP-binding proteins. Analysis of the Caenorhabditis elegans ARL6 homolog indicates that it is specifically expressed in ciliated cells, and that, in addition to the postulated cytoplasmic functions of ARL proteins, it undergoes intraflagellar transport. These findings implicate a small GTP-binding protein in ciliary transport and the pathogenesis of a pleiotropic disorder.


Assuntos
Fatores de Ribosilação do ADP/genética , Síndrome de Bardet-Biedl/genética , Genes ras , Proteínas de Membrana/genética , Mutação , Sequência de Bases , Cílios/metabolismo , Proteínas de Ligação ao GTP/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/citologia , Linhagem
4.
Nature ; 425(6958): 628-33, 2003 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-14520415

RESUMO

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells. We have cloned a new BBS gene, BBS8, which encodes a protein with a prokaryotic domain, pilF, involved in pilus formation and twitching mobility. In one family, a homozygous null BBS8 mutation leads to BBS with randomization of left-right body axis symmetry, a known defect of the nodal cilium. We have also found that BBS8 localizes specifically to ciliated structures, such as the connecting cilium of the retina and columnar epithelial cells in the lung. In cells, BBS8 localizes to centrosomes and basal bodies and interacts with PCM1, a protein probably involved in ciliogenesis. Finally, we demonstrate that all available Caenorhabditis elegans BBS homologues are expressed exclusively in ciliated neurons, and contain regulatory elements for RFX, a transcription factor that modulates the expression of genes associated with ciliogenesis and intraflagellar transport.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Cílios/patologia , Proteínas/genética , Proteínas/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Síndrome de Bardet-Biedl/metabolismo , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Centrossomo/patologia , Cílios/metabolismo , Proteínas do Citoesqueleto , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Homozigoto , Humanos , Escore Lod , Masculino , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Proteínas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Hum Genet ; 116(1-2): 62-71, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15517396

RESUMO

Genetically isolated populations, such as Newfoundland, have contributed greatly to the identification of disease-causing genes. A linkage disequilibrium (LD) study involving six Newfoundland families predicted a critical interval for Bardet-Biedl syndrome 1 (BBS1) (Young et al. in Am J Hum Genet 65:1680-1687, 1999), but the subsequent identification of BBS1 revealed that it lies outside this region. This suggested that either there is another gene responsible for BBS in these families or the Newfoundland population may not be ideal for LD studies. We screened these six Newfoundland families for mutations in BBS1 and found that affected individuals in five of them were homozygous for the same M390R mutation. There was no evidence for any BBS1 mutation in the affected individual in the sixth family. Therefore, one of the criteria for LD mapping was not met; namely, there should be a single disease-causing allele in the population. Haplotype analysis of unaffected individuals from south-west Newfoundland and English BBS1 patients homozygous for M390R, revealed that a second criterion for LD mapping was violated. The M390R mutation occurred in a common haplotype and both of these chromosomes, the ancestral wild-type and disease-causing haplotypes, were introduced to Newfoundland and spread by a founder effect. Moreover, it was found that disease-associated alleles occurred at relatively high frequencies in normal haplotypes and this probably accounted for the incorrect prediction in the previous LD study. Knowing the amount of genetic variation and its distribution in the Newfoundland population would be useful to maximize its potential for mapping hereditary disorders.


Assuntos
Síndrome de Bardet-Biedl/genética , Mapeamento Cromossômico , Desequilíbrio de Ligação , Proteínas/genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Feminino , Marcadores Genéticos , Genética Populacional , Genótipo , Haplótipos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Terra Nova e Labrador , Linhagem
6.
Am J Hum Genet ; 72(5): 1187-99, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12677556

RESUMO

Bardet-Biedl syndrome is a genetically and clinically heterogeneous disorder caused by mutations in at least seven loci (BBS1-7), five of which are cloned (BBS1, BBS2, BBS4, BBS6, and BBS7). Genetic and mutational analyses have indicated that, in some families, a combination of three mutant alleles at two loci (triallelic inheritance) is necessary for pathogenesis. To date, four of the five known BBS loci have been implicated in this mode of oligogenic disease transmission. We present a comprehensive analysis of the spectrum, distribution, and involvement in non-Mendelian trait transmission of mutant alleles in BBS1, the most common BBS locus. Analyses of 259 independent families segregating a BBS phenotype indicate that BBS1 participates in complex inheritance and that, in different families, mutations in BBS1 can interact genetically with mutations at each of the other known BBS genes, as well as at unknown loci, to cause the phenotype. Consistent with this model, we identified homozygous M390R alleles, the most frequent BBS1 mutation, in asymptomatic individuals in two families. Moreover, our statistical analyses indicate that the prevalence of the M390R allele in the general population is consistent with an oligogenic rather than a recessive model of disease transmission. The distribution of BBS oligogenic alleles also indicates that all BBS loci might interact genetically with each other, but some genes, especially BBS2 and BBS6, are more likely to participate in triallelic inheritance, suggesting a variable ability of the BBS proteins to interact genetically with each other.


Assuntos
Alelos , Síndrome de Bardet-Biedl/genética , Mutação , Proteínas/genética , Sequência de Aminoácidos , Estudos de Coortes , Sequência Conservada , Análise Mutacional de DNA , Família , Feminino , Frequência do Gene , Testes Genéticos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA