Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Resist Infect Control ; 12(1): 14, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814315

RESUMO

OBJECTIVES: Neonatal sepsis, a major cause of death amongst infants in sub-Saharan Africa, is often gut derived. Gut colonisation by Enterobacteriaceae producing extended spectrum beta-lactamase (ESBL) or carbapenemase enzymes can lead to antimicrobial-resistant (AMR) or untreatable infections. We sought to explore the rates of colonisation by ESBL or carbapenemase producers in two neonatal units (NNUs) in West and East Africa. METHODS: Stool and rectal swab samples were taken at multiple timepoints from newborns admitted to the NNUs at the University College Hospital, Ibadan, Nigeria and the Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, western Kenya. Samples were tested for ESBL and carbapenemase genes using a previously validated qPCR assay. Kaplan-Meier survival analysis was used to examine colonisation rates at both sites. RESULTS: In total 119 stool and rectal swab samples were taken from 42 infants admitted to the two NNUs. Colonisation with ESBL (37 infants, 89%) was more common than with carbapenemase producers (26, 62.4%; P = 0.093). Median survival time before colonisation with ESBL organisms was 7 days and with carbapenemase producers 16 days (P = 0.035). The majority of ESBL genes detected belonged to the CTX-M-1 (36/38; 95%), and CTX-M-9 (2/36; 5%) groups, and the most prevalent carbapenemase was blaNDM (27/29, 93%). CONCLUSIONS: Gut colonisation of neonates by AMR organisms was common and occurred rapidly in NNUs in Kenya and Nigeria. Active surveillance of colonisation will improve the understanding of AMR in these settings and guide infection control and antibiotic prescribing practice to improve clinical outcomes.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Recém-Nascido , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Quênia , Nigéria , Unidades Hospitalares
2.
Sci Rep ; 10(1): 8903, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483257

RESUMO

Bacterial neonatal meningitis results in high mortality and morbidity rates for those affected. Although improvements in diagnosis and treatment have led to a decline in mortality rates, morbidity rates have remained relatively unchanged. Bacterial resistance to antibiotics in this clinical setting further underlines the need for developing other technologies, such as phage therapy. We exploited an in vitro phage therapy model for studying bacterial neonatal meningitis based on Escherichia coli (E. coli) EV36, bacteriophage (phage) K1F and human cerebral microvascular endothelial cells (hCMECs). We show that phage K1F is phagocytosed and degraded by constitutive- and PAMP-dependent LC3-assisted phagocytosis and does not induce expression of inflammatory cytokines TNFα, IL-6, IL-8 or IFNß. Additionally, we observed that phage K1F temporarily decreases the barrier resistance of hCMEC cultures, a property that influences the barrier permeability, which could facilitate the transition of immune cells across the endothelial vessel in vivo. Collectively, we demonstrate that phage K1F can infect intracellular E. coli EV36 within hCMECs without themselves eliciting an inflammatory or defensive response. This study illustrates the potential of phage therapy targeting infections such as bacterial neonatal meningitis and is an important step for the continued development of phage therapy targeting antibiotic-resistant bacterial infections generally.


Assuntos
Bacteriófagos/fisiologia , Encéfalo/citologia , Endotélio Vascular/citologia , Escherichia coli/virologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/microbiologia , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/terapia , Adesões Focais/metabolismo , Humanos , Meningites Bacterianas/metabolismo , Meningites Bacterianas/terapia , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Terapia por Fagos , Fagocitose
3.
PeerJ ; 3: e704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25653898

RESUMO

Seabirds have been identified and used as indicators of ecosystem processes such as climate change and human activity in nearshore ecosystems around the globe. Temporal and spatial trends have been documented at large spatial scales, but few studies have examined more localized patterns of spatiotemporal variation, by species or functional group. In this paper, we apply spatial occupancy models to assess the spatial patchiness and interannual trends of 18 seabird species in the Puget Sound region (Washington State, USA). Our dataset, the Puget Sound Seabird Survey of the Seattle Audubon Society, is unique in that it represents a seven-year study, collected with a focus on winter months (October-April). Despite historic declines of seabirds in the region over the last 50 years, results from our study are optimistic, suggesting increases in probabilities of occurrence for 14 of the 18 species included. We found support for declines in occurrence for white-winged scoters, brants, and 2 species of grebes. The decline of Western grebes in particular is troubling, but in agreement with other recent studies that have shown support for a range shift south in recent years, to the southern end of California Current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA