Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(5): e0155721, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019717

RESUMO

CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline-rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC isoforms were expressed as opposed to C isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. IMPORTANCE CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study them individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.


Assuntos
Herpesvirus Humano 6 , Proteína Cofatora de Membrana , Linfócitos T , Internalização do Vírus , Células Cultivadas , Clatrina/metabolismo , Epigênese Genética , Deleção de Genes , Herpesvirus Humano 6/fisiologia , Humanos , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia
2.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504606

RESUMO

Tetraspanins are four-span transmembrane proteins that organize the membrane by forming tetraspanin-enriched microdomains. These have been shown to be important for virus entry. The human herpesvirus (HHV)-6A receptor CD46 is known to form complexes with the tetraspanin CD9 and ß1-integrins, however the significance of this for HHV-6A infection remains unexplored. Using a genetic approach, we demonstrate that knock out of CD46 abolishes binding to and infection of SupT1 cells by both HHV-6A and HHV-6B, establishing CD46 as a necessary receptor for productive infection of these cells. Knock out of CD9 in SupT1 cells had no effect on binding of either virus to the cell surface, but it reduced expression of immediate early transcripts to between 25-60% compared with the wild type cells. Although HHV-6B required CD46 for infection of SupT1, infection of Molt3 cells was independent of CD46 expression. Conversely, the absence of CD9 expression promoted infection of Molt3 cells with HHV-6B, indicating a negative role of CD9 for CD46-independent infection. Taken together, these data demonstrate that CD9 modulates infection with HHV-6A/B by promoting CD46-dependent infection and impairing CD46-independent infection. This also suggests that HHV-6A is strictly dependent on CD46 for entry, although other proteins, like CD9, may enhance the infection, whereas HHV-6B is more promiscuous and may use CD134, as demonstrated by others, CD46 in SupT1, and a novel yet unidentified receptor in Molt3 cells.Importance The mechanisms of entry of human herpesvirus (HHV)-6A and HHV-6B into host cells are of significance in order to develop novel drugs that may inhibit infection. To elucidate the contribution of the membrane proteins CD9 and CD46, we employed a genetic approach that eliminated these molecules from the host cell. This demonstrated that CD46 is critical for infection by HHV-6A, whereas infection by HHV-6B appeared to be more promiscuous. The infection of a T-cell line in the absence of CD46 and CD134 strongly suggest that an additional receptor for HHV-6B entry exists. Moreover, elimination of CD9 and subsequent reconstitution experiments demonstrated that CD9 promoted infection with HHV-6A and HHV-6B mediated by CD46, but inhibited infection with HHV-6B that occurred independent of CD46. Together, this demonstrated a CD46-dependent role of CD9 during infection with HHV-6A and HHV-6B and emphasized that HHV-6B may employ different entry mechanisms in various cells.

3.
J Biol Chem ; 291(5): 2271-87, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26627834

RESUMO

Carnivorous plants primarily use aspartic proteases during digestion of captured prey. In contrast, the major endopeptidases in the digestive fluid of the Venus flytrap (Dionaea muscipula) are cysteine proteases (dionain-1 to -4). Here, we present the crystal structure of mature dionain-1 in covalent complex with inhibitor E-64 at 1.5 Å resolution. The enzyme exhibits an overall protein fold reminiscent of other plant cysteine proteases. The inactive glycosylated pro-form undergoes autoprocessing and self-activation, optimally at the physiologically relevant pH value of 3.6, at which the protective effect of the pro-domain is lost. The mature enzyme was able to efficiently degrade a Drosophila fly protein extract at pH 4 showing high activity against the abundant Lys- and Arg-rich protein, myosin. The substrate specificity of dionain-1 was largely similar to that of papain with a preference for hydrophobic and aliphatic residues in subsite S2 and for positively charged residues in S1. A tentative structure of the pro-domain was obtained by homology modeling and suggested that a pro-peptide Lys residue intrudes into the S2 pocket, which is more spacious than in papain. This study provides the first analysis of a cysteine protease from the digestive fluid of a carnivorous plant and confirms the close relationship between carnivorous action and plant defense mechanisms.


Assuntos
Cisteína Endopeptidases/química , Cisteína Proteases/química , Droseraceae/enzimologia , Proteínas de Plantas/química , Animais , Caseínas/química , Bovinos , Cromatografia Líquida , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , Drosophila melanogaster , Glicosilação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Leucina/análogos & derivados , Leucina/química , Lisina/química , Modelos Moleculares , Papaína/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem
4.
Int J Parasitol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116918

RESUMO

The intestinal helminth Ascaris lumbricoides infects over 800 million people. Infections are often chronic and immunity is not sterilizing due to host-immune modulation, therefore reinfection is common after antihelmintic treatment. We have previously demonstrated a role for Ascaris spp. extracellular vesicles (EVs) in host immune modulation but whether EVs are recognized by the adaptive immune system and are present systemically in the host remains unknown. Therefore, we employed a well-established trickle infection model in pigs to mimic natural Ascaris infection in humans. EVs were isolated from adult Ascaris suum followed by immunoblotting of EV and EV-depleted secretory fractions using plasma from infected and uninfected pigs. Next, EVs were isolated from pig plasma at day 56 post first infection and subjected to deep small RNAseq analysis. RNAs were aligned to A. suum and Sus scrofa miRNA complements to detect A. suum EVs and elucidate the host EV micro RNA (miRNA) response to infection, respectively. Infection generates robust antibody responses against A. suum EVs that is distinct from EV-depleted fractions. However, A. suum miRNAs were not detectable in EVs from the peripheral blood. Notably, host plasma-derived EV miRNA profiles showed significant changes between infected and uninfected pigs, indicating that Ascaris infection drives systemic changes in host EV composition.

5.
Virology ; 502: 160-170, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28056415

RESUMO

CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46+CD134- T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.


Assuntos
Herpesvirus Humano 6/fisiologia , Proteína Cofatora de Membrana/metabolismo , Linfócitos T/virologia , Tropismo Viral , Linhagem Celular , Herpesvirus Humano 6/classificação , Herpesvirus Humano 6/genética , Humanos , Proteína Cofatora de Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA