RESUMO
Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.
Assuntos
Oócitos , Zigoto , Animais , Criança , Feminino , Humanos , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Impressão Genômica/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
In this study, the effects of aging and parity on VEGF-A/VEGFR protein content and signaling in the mice ovaries were determined. The research group consisted of nulliparous (virgins, V) and multiparous (M) mice during late-reproductive (L, 9-12 months) and post-reproductive (P, 15-18 months) stages. Whilst ovarian VEGFR1 and VEGFR2 remained unchanged in all the experimental groups (LM, LV, PM, PV), protein content of VEGF-A and phosphorylated VEGFR2 significantly decreased only in PM ovaries. VEGF-A/VEGFR2-dependent activation of ERK1/2, p38, as well as protein content of cyclin D1, cyclin E1, and Cdc25A were then assessed. In ovaries of LV and LM, all of these downstream effectors were maintained at a comparable low/undetectable level. Conversely, the decrease recorded in PM ovaries did not occur in the PV group, in which the significant increase of kinases and cyclins, as well phosphorylation levels mirrored the trend of the pro-angiogenic markers. Altogether, the present results demonstrated that, in mice, ovarian VEGF-A/VEGFR2 protein content and downstream signaling can be modulated in an age- and parity-dependent manner. Moreover, the lowest levels of pro-angiogenic and cell cycle progression markers detected in PM mouse ovaries sustains the hypothesis that parity could exert a protective role by downregulating the protein content of key mediators of pathological angiogenesis.
Assuntos
Ovário , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Camundongos , Gravidez , Envelhecimento , Ovário/metabolismo , Paridade , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio VascularRESUMO
The endocannabinoid (eCB) system has gained ground as a key modulator of several female fertility-related processes, under physiological/pathological conditions. Nevertheless, its modulation during reproductive aging remains unclear. This study aimed to investigate the expression levels of the main receptors (cannabinoid receptor 1,CB1; cannabinoid receptor 2, CB2; G-protein coupled receptor, GPR55; and transient receptor potential vanilloid type 1 channel, TRPV1) and metabolic enzymes (N-acylphosphatidylethanolamine phospholipase D, NAPE-PLD; fatty acid amide hydrolase, FAAH; monoacylglycerol lipase, MAGL; and diacylglycerol lipase, DAGL-α and -ß) of this system in the ovaries, oviducts, and uteri of mice at prepubertal, adult, late reproductive, and post-reproductive stages through quantitative ELISA and immunohistochemistry. The ELISA showed that among the receptors, TRPV1 had the highest expression and significantly increased during aging. Among the enzymes, NAPE-PLD, FAAH, and DAGL-ß were the most expressed in these organs at all ages, and increased age-dependently. Immunohistochemistry revealed that, regardless of age, NAPE-PLD and FAAH were mainly found in the epithelial cells facing the lumen of the oviduct and uteri. Moreover, in ovaries, NAPE-PLD was predominant in the granulosa cells, while FAAH was sparse in the stromal compartment. Of note, the age-dependent increase in TRPV1 and DAGL-ß could be indicative of increased inflammation, while that of NAPE-PLD and FAAH could suggest the need to tightly control the levels of the eCB anandamide at late reproductive age. These findings offer new insights into the role of the eCB system in female reproduction, with potential for therapeutic exploitation.
Assuntos
Endocanabinoides , Fosfolipase D , Camundongos , Animais , Feminino , Endocanabinoides/metabolismo , Fosfolipase D/metabolismo , Útero/metabolismo , Reprodução , Receptores de Canabinoides , Receptor CB1 de Canabinoide , Amidoidrolases/metabolismoRESUMO
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS's drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins.
Assuntos
Antioxidantes , Proteínas Quinases Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas de Choque Térmico HSP27 , Proteínas Quinases p38 Ativadas por Mitógeno , Apoptose , Proteína Quinase 8 Ativada por Mitógeno , DNA MitocondrialRESUMO
Controlled ovarian hyperstimulation (COH) is routinary used in assisted reproductive technologies (ARTs) to increase the yields of mature oocytes. The possibility that patients with a history of failures or poor-responders may develop side-effects following these treatments is still debated. Epidemiological studies reported controversial results about pregnancy outcome and the risk of developing gynecological cancers. By using a mouse model, here we compared the ultrastructural features of fallopian tubes (FTs) obtained from mice undergoing or not (control, CTR) four (4R) and eight (8R) rounds of gonadotropin stimulation. Although the morphological characteristics of oviductal layers seemed unaffected by repeated treatments, dose-response ultrastructural alterations in the ampulla appeared in the 4R group and even more in the 8R group. The targets were oviductal ciliated (CCs) and non-ciliated (NCCs) cells, which showed damaged mitochondria and glycogen accumulations in the cytoplasm. The drastic reduction of CCs, evident after 4R, was supported by the absence of cilia. After 8R, glycogen granules were significantly reduced and massive degeneration of mitochondria, which appeared swollen and/or vacuolated, occurred in NCCs. Moreover, disintegrated mitochondria were found at the periphery of mitophagic vacuoles with evident signs of cristolysis. The morphometric analysis evidenced a significant increase in the density and frequency of damaged mitochondria after 4R and 8R. The absence of cilia, necessary to sustain oviductal transport of oocytes, spermatozoa and embryos, may originate from either mitochondrial dysfunction or glycogen consumption. These results suggest that repeated COH treatments could induce alterations impairing fertilization and embryo transport toward the uterus.
Assuntos
Cílios/ultraestrutura , Epitélio/ultraestrutura , Tubas Uterinas/ultraestrutura , Indução da Ovulação , Animais , Feminino , Camundongos , Mitocôndrias/ultraestrutura , Mitofagia/fisiologia , Vacúolos/ultraestruturaRESUMO
Bisphenol A (BPA) is an endocrine disruptor that negatively affects spermatogenesis, a process where Sertoli cells play a central role. Thus, in the present study we sought to ascertain whether BPA could modulate the endocannabinoid (eCB) system in exposed mouse primary Sertoli cells. Under our experimental conditions, BPA turned out to be cytotoxic to Sertoli cells with an half-maximal inhibitory concentration (IC50) of ~6.0 µM. Exposure to a non-cytotoxic dose of BPA (i.e., 0.5 µM for 48 h) increased the expression levels of specific components of the eCB system, namely: type-1 cannabinoid (CB1) receptor and diacylglycerol lipase-α (DAGL-α), at mRNA level, type-2 cannabinoid (CB2) receptor, transient receptor potential vanilloid 1 (TRPV1) receptors, and DAGL-ß, at protein level. Interestingly, BPA also increased the production of inhibin B, but not that of transferrin, and blockade of either CB2 receptor or TRPV1 receptor further enhanced the BPA effect. Altogether, our study provides unprecedented evidence that BPA deranges the eCB system of Sertoli cells towards CB2- and TRPV1-dependent signal transduction, both receptors being engaged in modulating BPA effects on inhibin B production. These findings add CB2 and TRPV1 receptors, and hence the eCB signaling, to the other molecular targets of BPA already known in mammalian cells.
Assuntos
Compostos Benzidrílicos/toxicidade , Endocanabinoides/metabolismo , Inibinas/biossíntese , Fenóis/toxicidade , Células de Sertoli/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Células de Sertoli/efeitos dos fármacos , Transferrina/metabolismoRESUMO
Endocannabinoids are key-players of female fertility and potential biomarkers of reproductive dysfunctions. Here, we investigated localization and expression of cannabinoid receptor type-1 and -2 (CB1R and CB2R), G-protein coupled receptor 55 (GPR55), and transient receptor potential vanilloid type 1 channel (TRPV1) in mouse oocytes collected at different stages of in vivo meiotic maturation (germinal vesicle, GV; metaphase I, MI; metaphase II, MII) through qPCR, confocal imaging, and western blot. Despite the significant decrease in CB1R, CB2R, and GPR55 mRNAs occurring from GV to MII, CB2R and GPR55 protein contents increased during the same period. At GV, only CB1R was localized in oolemma, but it completely disappeared at MI. TRPV1 was always undetectable. When oocytes were in vitro matured with CB1R and CB2R but not GPR55 antagonists, a significant delay of GV breakdown occurred, sustained by elevated intraoocyte cAMP concentration. Although CBRs antagonists did not affect polar body I emission or chromosome alignment, GPR55 antagonist impaired in ~75% of oocytes the formation of normal-sized MI and MII spindles. These findings open a new avenue to interrogate oocyte pathophysiology and offer potentially new targets for the therapy of reproductive alterations.
Assuntos
Oócitos/citologia , Oócitos/metabolismo , Oogênese , Receptores de Canabinoides/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Diferenciação Celular/genética , AMP Cíclico/metabolismo , Endocanabinoides/metabolismo , Expressão Gênica , Camundongos , Oócitos/efeitos dos fármacos , Oogênese/genética , Ligação Proteica , RNA Mensageiro/genética , Receptores de Canabinoides/genéticaRESUMO
Endocannabinoid (eCB)-binding receptors can be modulated by several ligands and membrane environment, yet the effect of glycosylation remains to be assessed. In this study, we used human neuroblastoma SH-SY5Y cells to interrogate whether expression, cellular localization, and activity of eCB-binding receptors may depend on N-linked glycosylation. Following treatment with tunicamycin (a specific inhibitor of N-linked glycosylation) at the non-cytotoxic dose of 1 µg/mL, mRNA, protein levels and localization of eCB-binding receptors, as well as N-acetylglucosamine (GlcNAc) residues, were evaluated in SH-SY5Y cells by means of quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR), fluorescence-activated cell sorting (FACS), and confocal microscopy, respectively. In addition, the activity of type-1 and type-2 cannabinoid receptors (CB1 and CB2) was assessed by means of rapid binding assays. Significant changes in gene and protein expression were found upon tunicamycin treatment for CB1 and CB2, as well as for GPR55 receptors, but not for transient receptor potential vanilloid 1 (TRPV1). Deglycosylation experiments with N-glycosidase-F and immunoblot of cell membranes derived from SH-SY5Y cells confirmed the presence of one glycosylated form in CB1 (70 kDa), that was reduced by tunicamycin. Morphological studies demonstrated the co-localization of CB1 with GlcNAc residues, and showed that tunicamycin reduced CB1 membrane expression with a marked nuclear localization, as confirmed by immunoblotting. Cleavage of the carbohydrate side chain did not modify CB receptor binding affinity. Overall, these results support N-linked glycosylation as an unprecedented post-translational modification that may modulate eCB-binding receptors' expression and localization, in particular for CB1.
Assuntos
Endocanabinoides/genética , Neuroblastoma/tratamento farmacológico , Receptores de Canabinoides/química , Tunicamicina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Endocanabinoides/química , Endocanabinoides/farmacologia , Citometria de Fluxo , Glicosilação/efeitos dos fármacos , Humanos , Ligantes , Microscopia Confocal , Neuroblastoma/genética , Neuroblastoma/patologia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Receptores de Canabinoides/genética , Canais de Cátion TRPV/genética , Tunicamicina/químicaRESUMO
In this study, it was evaluated if increased rounds of gonadotropin stimulation could affect in mice: (i) expression levels of proteins regulating cell cycle and DNA repair in fallopian tubes and (ii) meiotic spindle morphology of ovulated oocytes. To this end, adult female mice were subjected or not (Control) to 6 or 8 rounds of gonadotropin stimulation. Ovulated oocytes were incubated with anti A/B tubulin to evaluate spindle morphology. Fallopian tubes were analyzed to detect Cyclin D1, phospho-p53/p53, phospho-AKT/AKT, phospho-GSK3B/GSK3B, SOX2, OCT3/4, phospho-B-catenin/B-catenin, phospho-CHK1 and phospho-H2A.X protein levels. After 6 rounds, Cyclin D1, p53 and phospho-p53 contents were higher than Control. After 8 rounds, the contents of phosphorylated AKT, GSK3B and p53 as well as of total p53, Cyclin D1 and OCT3/4 significantly increased in comparison with Control. Conversely, SOX2 and B-catenin were similarly expressed among all experimental groups. The finding that phospho-CHK1 and phospho-H2A.X protein levels were undetectable supported the absence of extensive DNA damage. Oocytes number and percentage of normal meiotic spindles drastically decreased from 6 rounds onward. Altogether, our results demonstrated that 6 and 8 cycles of gonadotropin stimulation reduce mouse reproductive performances by inducing over-expression and over-activation of proteins controlling cell cycle progression in fallopian tubes and by impairing oocyte spindle.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Tubas Uterinas/patologia , Gonadotropinas/farmacologia , Oócitos/patologia , Fuso Acromático/patologia , Animais , Tubas Uterinas/efeitos dos fármacos , Tubas Uterinas/metabolismo , Feminino , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fosforilação , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismoRESUMO
The aim of this study has been to determine the effects of in vivo post-ovulatory ageing (POA) on the distribution of spindle-associated proteins, histone H3/H4 post-translational modifications and on v-akt murine thymoma viral oncogene homolog 1 (Akt) expression levels. To this end, oocytes were retrieved 13, 29 and 33h after human chorionic gonadotrophin (hCG) treatment. The presence and distribution at the meiotic spindle of acetylated tubulin, γ-tubulin, polo kinase-1 and Ser473/Thr308 phosphorylated Akt (pAkt) as well as histone H3 and H4 acetylation and phosphorylation levels were assayed via immunofluorescence. Akt expression levels were determined via reverse transcription-polymerase chain reaction and western blotting analyses. Spindles from oocytes recovered 13h and 29h after hCG treatment showed similar levels of acetylated tubulin but ageing induced: (1) translocation of γ-tubulin from spindle poles to microtubules, (2) absence of Thr308- and Ser473-pAkt in 76% and 30% of oocytes, respectively, and (3) a significant reduction in phosphorylation levels of serine 10 on histone 3. At 29h, a significant decrease in Akt mRNA, but not in pAkt or Akt protein levels, was recorded. By contrast, protein content significantly decreased 33h after hCG. We conclude that POA impairs oocyte viability and fertilisability by altering the expression levels and spindle distribution of proteins that are implicated in cell survival and chromosome segregation. Together, these events could play a role in oocyte apoptosis.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular , Oócitos/enzimologia , Ovulação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fuso Acromático/enzimologia , Acetilação , Animais , Sobrevivência Celular , Gonadotropina Coriônica/farmacologia , Regulação para Baixo , Feminino , Fármacos para a Fertilidade Feminina/farmacologia , Fertilização , Histonas/metabolismo , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/metabolismo , Fuso Acromático/efeitos dos fármacos , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Quinase 1 Polo-LikeRESUMO
PURPOSE: To understand if repeated cycles (2-4 rounds) of gonadotropin stimulation could affect intracellular localization/content of proteins controlling cell cycle progression in mouse fallopian tubes (FT) and ovaries. METHODS: FT and ovaries of estrous mice (control) and of stimulated mice were analyzed to detect Oct-3/4, Sox-2, p53, ß-catenin, pAKT and cyclin D1 localization/content. Spindles and chromosome alignment were analyzed in ovulated oocytes. RESULTS: After round 4, FT and ovaries of control and stimulated groups showed no differences in Oct-3/4, Sox-2 and ß-catenin localization nor in Oct-3/4, Sox-2, p53, ß-catenin and pAKT contents. Cyclin D1 level increased significantly in FT of treated mice. Oocytes number decreased meanwhile frequency of abnormal meiotic spindles increased with treatments. CONCLUSIONS: Repetitive stimulations affected oocyte spindle morphology but did not induce changes in a set of proteins involved in cell cycle progression, usually altered in ovarian cancer. The significant increase of cyclin D1 in the FT requires further investigation.
Assuntos
Pontos de Checagem do Ciclo Celular/genética , Tubas Uterinas/metabolismo , Ovário/metabolismo , Indução da Ovulação , Animais , Tubas Uterinas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotropinas/administração & dosagem , Camundongos , Ovário/efeitos dos fármacosRESUMO
Trifluralin, a herbicide used to protect many arable and horticultural crops, was evaluated for its potential toxicity on the mammalian ovary. To this end, adult female mice were fed or not (control) with a trifluralin-enriched diet (150 mg/kg body weight/day) during gestation and lactation. After weaning, 3-week-old female mice from either trifluralin-treated or control groups were used to evaluate whether the exposure to this herbicide in utero and during lactation could induce stress responses in the ovary. It was found that trifluralin exposure caused a significantly higher level of p53, but not of pRb, in the whole ovary, and in particular in granulosa cells. TUNEL staining showed that herbicide treatment did not increase the apoptotic index of the somatic compartment. Also oocyte fertilizability was unaffected, as metaphase II oocytes retrieved from treated mice were capable of forming male and female pronuclei after in vitro fertilization as control mice. However, trifluralin determined a slightly higher number of oocytes with cytoplasmic degeneration compared with control animals. In conclusion, our results suggest that exposure to a low trifluralin dose during pregnancy and lactation does not impair oocyte quality, but can induce a stress response in ovarian somatic cells.
Assuntos
Herbicidas/toxicidade , Ovário/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Trifluralina/toxicidade , Adulto , Animais , Apoptose/efeitos dos fármacos , Dieta , Feminino , Fertilização/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Técnicas In Vitro , Lactação , Masculino , Exposição Materna/efeitos adversos , Metáfase , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/citologia , Ovário/metabolismo , Gravidez , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant.
Assuntos
Apoptose/fisiologia , Fungicidas Industriais/toxicidade , Células da Granulosa/efeitos dos fármacos , Maneb/toxicidade , Folículo Ovariano/efeitos dos fármacos , Zineb/toxicidade , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Células da Granulosa/ultraestrutura , Humanos , Camundongos , Microscopia Confocal , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
UNLABELLED: Multicenter prospective cohort study, to validate the Italian version of the Braden Q scale for the risk of pressure sores in newborns and up to 8 years old children. INTRODUCTION: Children admitted to Intensive care Units (ICU), oncology and neurology/neurosurgery wards are at risk of developing pressure sores. AIM: To validate the Italian version of the Braden Q scale for the assessment of the risk of developing pressure sores in children. METHODS: Children from 21 days to 8 years, admitted to intensive and sub intensive units were recruited. Premature babies, children admitted with a pressure sore and with a story of congenital cardiomiopathy were excluded. In this cohort, multicentre and with repeated measurements study, the first assessment was performed after 24 hours from hospital admission, using the Braden Q Scale (Suddaby's version). The pressure sores were assessed with the Skin assessment Tool and staged according to the National Pressure Ulcer Advisory Panel. RESULTS. On the 157 children 524 observation were conducted. The incidence of pressure sores was 17.2%. Only the analysis on specific subgroups of patients showed a good diagnostic accuracy: 71.4% on children 3-8 years; 85.6% in sub intensive wards. CONCLUSIONS: The Braden Q scale may be reliably used and shows a good diagnostic accuracy in children 3-8 years of age admitted to sub-intensive, neurology, oncology and heamatology wards.
Assuntos
Úlcera por Pressão/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Lactente , Recém-Nascido , Itália , Idioma , Estudos Prospectivos , Medição de RiscoRESUMO
Humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and our bodily systems are well adapted to protect us from these potentially harmful external agents. However, technological advancement has dramatically increased the production of nanometer-sized particles or nanoparticles (NPs), and many epidemiological studies have confirmed a correlation between NP exposure and the onset of cardiovascular diseases and various cancers. Among the adverse effects on human health, in recent years, potential hazards of nanomaterials on female reproductive organs have received increasing concern. Several animal and human studies have shown that NPs can translocate to the ovary, uterus, and placenta, thus negatively impacting female reproductive potential and fetal health. However, NPs are increasingly being used for therapeutic purposes as tools capable of modifying the natural history of degenerative diseases. Here we briefly summarize the toxic effects of few but widely diffused NPs on female fertility and also the use of nanotechnologies as a new molecular approach for either specific pathological conditions, such as ovarian cancer and infertility, or the cryopreservation of gametes and embryos.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Gravidez , Animais , Feminino , Humanos , Nanopartículas/toxicidade , Ovário , Reprodução , Células GerminativasRESUMO
BACKGROUND: In vitro maturation of ovarian follicles, in combination with cryopreservation, might be a valuable method for preserving and/or restoring fertility in mammals with impaired reproductive function. Several culture systems capable of sustaining mammalian follicle growth in vitro have been developed and many studies exist on factors influencing the development of in vitro grown oocytes. However, a very few reports concern the ultrastructural morphology of in vitro grown follicles. METHODS: The present study was designed to evaluate, by transmission and scanning electron microscopy, the ultrastructural features of isolated mouse preantral follicles cultured in vitro for 6 days in a standard medium containing fetal calf serum (FCS). The culture was supplemented or not with FSH. RESULTS: The follicles cultured in FCS alone, without FSH supplementation (FCS follicles), did not form the antral cavity. They displayed low differentiation (juxta-nuclear aggregates of organelles in the ooplasm, a variable amount of microvilli on the oolemma, numerous granulosa cell-oolemma contacts, signs of degeneration in granulosa cell compartment). Eighty (80)% of FSH-treated follicles formed the antral cavity (FSH antral follicles). These follicles showed various ultrastructural markers of maturity (spreading of organelles in ooplasm, abundant microvilli on the oolemma, scarce granulosa cell-oolemma contacts, granulosa cell proliferation). Areas of detachment of the innermost granulosa cell layer from the oocyte were also found, along with a diffuse granulosa cell loosening compatible with the antral formation. Theca cells showed an immature morphology for the stage reached. Twenty (20)% of FSH-treated follicles did not develop the antral cavity (FSH non-antral follicles) and displayed morphological differentiation features intermediate between those shown by FCS and FSH antral follicles (spreading of organelles in the ooplasm, variable amount of microvilli, scattered granulosa cell-oolemma contacts, signs of degeneration in granulosa cell compartment). CONCLUSIONS: It is concluded that FSH supports the in vitro growth of follicles, but the presence of a diffuse structural granulosa cell-oocyte uncoupling and the absence of theca development unveil the incomplete efficiency of the system. The present study contributes to explain, from a morphological point of view, the effects of culture conditions on the development of mouse in vitro grown follicles and to highlight the necessity of maintaining efficient intercellular communications to obtain large numbers of fully-grown mature germ cells.
Assuntos
Folículo Ovariano/ultraestrutura , Animais , Feminino , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oócitos/ultraestrutura , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Células Tecais/ultraestrutura , Técnicas de Cultura de TecidosRESUMO
To improve developmental competence of in vitro matured oocytes, culture medium can be supplemented with hypoxanthine (Hx) and FSH or epidermal growth factor (EGF) to trigger the activation of essential signalling pathways regulating meiotic resumption and progression. Since the serine/threonine kinase, Akt, contributes to the regulation of the meiotic cell cycle, this study analysed its expression level and localization at the meiotic spindle in oocytes matured in vivo or in vitro in the presence of Hx-FSH or Hx-EGF. Independently of culture conditions adopted, Akt mRNA concentration did not vary from germinal vesicle to metaphase I (MI), while at MII a significant decrease in Akt1 mRNA concentration was recorded in oocytes matured in vivo and in those stimulated by Hx-EGF (P < 0.05). Phoshorylated Akt protein content was similar in the different groups of MI oocytes, but it decreased at MII in oocytes matured either in vivo or in vitro with Hx-EGF. Ser-473-phosphorylated Akt was localized uniformly to the meiotic spindle in more than 90% of oocytes. These results indicate that, in mouse oocytes, Akt expression is differentially regulated during in vivo and in vitro maturation and suggest that EGF could be a positive modulator, even stronger than FSH, of oocyte meiotic maturation.
Assuntos
Oócitos/metabolismo , Oogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Hipoxantina/farmacologia , Técnicas In Vitro , Camundongos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Fosforilação , RNA Mensageiro/metabolismo , Fuso Acromático/metabolismoRESUMO
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Assuntos
Endocanabinoides/genética , Receptores de Canabinoides/genética , Animais , Endocanabinoides/química , Feminino , Humanos , Receptores de Canabinoides/química , Reprodução/genética , Transdução de Sinais/genéticaRESUMO
Endometriosis can impair fertility by reducing ovarian reserve and the production of good-quality oocytes. The surgical removal of endometriotic lesions is generally recommended for women who wish to conceive. In this paper we studied whether ovarian cortex adjacent to excised small (diameter ≤ 4â¯cm) endometriotic cyst (here referred as Cortex Surrounding Endometriotic Cyst, CSEC) showed signs of tissue damages by evaluating the expression of proteins involved in DNA repair and apoptosis. To this end, phosphorylated H2A.X, Chk1 and 2, ATM and ATR, Bcl-2, Bid, phosphorylated and total p53, caspases (9, 8 and 3), XIAP, phosphorylated and total NFκB were analyzed by western blot. Results showed that caspase 8, XIAP, p53/p-p53 and NFκB were more abundantly expressed in all samples of CSEC group in comparison with ovarian cortex of controls. Conversely, the levels of the other proteins were comparable between the two groups. In conclusion, these results suggest that NFκB, caspase 8 and p53/p-p53 elevated expressions in samples of CSEC can be considered as an early sign of tissue injury, indicating that ovarian cortex is already sensitized to apoptosis and inflammation. Therefore, excision of EC should occur very early, to avoid further ovarian damages.
Assuntos
Apoptose/fisiologia , Cistos/patologia , Reparo do DNA/fisiologia , Endometriose/metabolismo , Ovário/metabolismo , Biomarcadores , Cistos/metabolismo , Endometriose/patologia , Feminino , Regulação da Expressão Gênica , HumanosRESUMO
Tebuconazole and Econazole are triazole and imidazole fungicides currently used worldwide. Although their reproductive toxicity in mammals has been described, their effect on male reproductive systems has been poorly investigated. As humans may be exposed to different azole compounds simultaneously, the combinational in vitro toxicity of Tebuconazole and Econazole (MIX) in mouse Sertoli TM4 cells was investigated. This study demonstrates that Tebuconazole (40 µM) and Econazole (20 µM) act synergistically in mediating decrease of mitochondrial membrane potential (ΔΨm) and changes in mitochondrial morphology. These events were associated with ATP depletion, cell cycle arrest, and sequential activation of autophagy and apoptosis. Remarkable differences on other parameters such as AMP/ATP ratio and adenylate energy charge were observed. Pharmacological inhibition of autophagy by bafilomycin A1 leads to enhanced MIX-induced apoptosis suggesting an adaptive cytoprotective function for MIX-modulated autophagy. Finally, a possible role of AMPK/ULK1 axis in mediating adaptive signalling cascades in response to energy stress was hypothesized. Consistently, ULK1 Ser 555 phosphorylation occurred in response to AMPK (Thr 172) activation. In conclusion, Tebuconazole and Econazole combination, at concentrations relevant for dermal and clinical exposure, induces a severe mitochondrial stress in SCs. Consequently, a prolonged exposure may affect the ability of the cells to re-establish homeostasis and trigger apoptosis.