Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7846): 416-422, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597761

RESUMO

Crystallization by particle attachment (CPA) is a frequently occurring mechanism of colloidal crystallization that results in hierarchical morphologies1-4. CPA has been exploited to create nanomaterials with unusual properties4-6 and is implicated in the development of complex mineral textures1,7. Oriented attachment7,8-a form of CPA in which particles align along specific crystallographic directions-produces mesocrystals that diffract as single crystals do, although the constituent particles are still discernible2,9. The conventional view of CPA is that nucleation provides a supply of particles that aggregate via Brownian motion biased by attractive interparticle potentials1,9-12. However, mesocrystals often exhibit regular morphologies and uniform sizes. Although many crystal systems form mesocrystals1-9 and individual attachment events have been directly visualized10, how random attachment events lead to well defined, self-similar morphologies remains unknown, as does the role of surface-bound ligands, which are ubiquitous in nanoparticle systems3,9,11. Attempts to understand mesocrystal formation are further complicated in many systems by the presence of precursor nanoparticles with a phase distinct from that of the bulk1,13,14. Some studies propose that such particles convert before attachment15, whereas others attribute conversion to the attachment process itself16 and yet others conclude that transformation occurs after the mesocrystals exceed a characteristic size14,17. Here we investigate mesocrystal formation by iron oxides, which are important colloidal phases in natural environments18,19 and classic examples of systems forming ubiquitous precursor phases and undergoing CPA accompanied by phase transformations15,19-21. Combining in situ transmission electron microscopy (TEM) at 80 degrees Celsius with 'freeze-and-look' TEM, we tracked the formation of haematite (Hm) mesocrystals in the presence of oxalate (Ox), which is abundant in soils, where iron oxides are common. We find that isolated Hm particles rarely appear, but once formed, interfacial gradients at the Ox-covered surfaces drive Hm particles to nucleate repeatedly about two nanometres from the surfaces, to which they then attach, thereby generating mesocrystals. Comparison to natural and synthetic systems suggests that interface-driven pathways are widespread.

2.
Proc Natl Acad Sci U S A ; 120(23): e2101243120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252978

RESUMO

Iron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes. Here, we use in situ liquid-phase-transmission electron microscopy (LP-TEM) and simulations of radiolysis to probe and control acidic versus reductive dissolution of akaganeite (ß-FeOOH) nanorods. Informed by crystal structure and surface chemistry, the balance between acidic dissolution at rod tips and reductive dissolution at rod sides was systematically varied using pH buffers, background chloride anions, and electron beam dose. We find that buffers, such as bis-tris, effectively inhibited dissolution by consuming radiolytic acidic and reducing species such as superoxides and aqueous electrons. In contrast, chloride anions simultaneously suppressed dissolution at rod tips by stabilizing structural elements while promoting dissolution at rod sides through surface complexation. Dissolution behaviors were systematically varied by shifting the balance between acidic and reductive attacks. The findings show LP-TEM combined with simulations of radiolysis effects can provide a unique and versatile platform for quantitatively investigating dissolution mechanisms, with implications for understanding metal cycling in natural environments and the development of tailored nanomaterials.

3.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186959

RESUMO

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

4.
Proc Natl Acad Sci U S A ; 119(11): e2112679119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275793

RESUMO

SignificanceMany crystallization processes occurring in nature produce highly ordered hierarchical architectures. Their formation cannot be explained using classical models of monomer-by-monomer growth. One of the possible pathways involves crystallization through the attachment of oriented nanocrystals. Thus, it requires detailed understanding of the mechanism of particle dynamics that leads to their precise crystallographic alignment along specific faces. In this study, we discover a particle-morphology-independent oriented attachment mechanism for hematite nanocrystals. Independent of crystal morphology, particles always align along the [001] direction driven by aligning interactions between (001) faces and repulsive interactions between other pairs of hematite faces. These results highlight that strong face specificity along one crystallographic direction can render oriented attachment to be independent of initial particle morphology.

5.
Inorg Chem ; 63(4): 1793-1802, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232379

RESUMO

A detailed analysis is presented for the covalent character of the orbitals in the actinyls: UO22+, NpO22+, and PuO22+. Both the initial, or ground state, GS, configuration and the excited configurations where a 3d electron is excited into the open valence, nominally the 5f shell, are considered. The orbitals are determined as fully relativistic, four component Dirac-Coulomb Hartree-Fock solutions. Several measures, which go beyond the commonly used population analyses, are used to characterize the covalent character of an orbital in order to obtain reliable estimates of the covalency. Although there are differences in the covalent character of the orbitals for the initial and excited configurations of the different actinyls, there is a surprising similarity in the covalent character for all of the states considered. This is true both between the initial and excited configurations as well as between the different actinyls. The analysis emphasizes the 5f covalent character in the closed shell bonding orbitals and the open shell antibonding orbitals since the focus is on characterizing orbitals needed in a many-body treatment of the actinyl wave functions. However, estimates are also made of the participation of the actinide 6d in the covalent bonding.

6.
Environ Sci Technol ; 58(6): 2798-2807, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294779

RESUMO

Solar photoexcitation of chromophoric groups in dissolved organic matter (DOM), when coupled to photoreduction of ubiquitous Fe(III)-oxide nanoparticles, can significantly accelerate DOM degradation in near-surface terrestrial systems, but the mechanisms of these reactions remain elusive. We examined the photolysis of chromophoric soil DOM coated onto hematite nanoplatelets featuring (001) exposed facets using a combination of molecular spectroscopies and density functional theory (DFT) computations. Reactive oxygen species (ROS) probed by electron paramagnetic resonance (EPR) spectroscopy revealed that both singlet oxygen and superoxide are the predominant ROS responsible for DOM degradation. DFT calculations confirmed that Fe(II) on the hematite (001) surface, created by interfacial electron transfer from photoexcited chromophores in DOM, can reduce dioxygen molecules to superoxide radicals (•O2-) through a one-electron transfer process. 1H nuclear magnetic resonance (NMR) and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) spectroscopies show that the association of DOM with hematite enhances the cleavage of aromatic groups during photodegradation. The findings point to a pivotal role for organic matter at the interface that guides specific ROS generation and the subsequent photodegradation process, as well as the prospect of using ROS signatures as a forensic tool to help interpret more complicated field-relevant systems.


Assuntos
Matéria Orgânica Dissolvida , Compostos Férricos , Espécies Reativas de Oxigênio , Superóxidos , Fotólise
7.
Environ Sci Technol ; 58(4): 2017-2026, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214482

RESUMO

Understanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH. Classical molecular dynamics simulations suggest that the adsorption of oxalate dianions onto the boehmite surface under high pH can occur through either inner- or outer-sphere complexation mechanisms depending on adsorption sites. However, both adsorption models indicate relatively weak binding, with an energy preference of 1.26 to 2.10 kcal/mol. By preloading boehmite nanoplates with oxalate or acetate, we observed suppression of dissolution rates by 23 or 10%, respectively, compared to pure solids. Scanning electron microscopy and transmission electron microscopy characterizations revealed no detectable difference in the morphologic evolution of the dissolving boehmite materials. We conclude that preadsorbed carboxylates can persist on boehmite surfaces, decreasing the density of dissolution-active sites and thereby adding extrinsic controls on dissolution rates.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Hidróxido de Sódio , Hidróxido de Alumínio/química , Óxido de Alumínio/química , Adsorção , Oxalatos
8.
Phys Chem Chem Phys ; 26(3): 2269-2276, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165646

RESUMO

Developing a better understanding of water ordering and hydroxylation at oxide mineral surfaces is important across a breath of application spaces. Recent vibrational sum frequency generation (vSFG) measurements on MgO(100) surfaces at ambient conditions showed that water dissociates and hydroxylates the surface yielding a non-hydrogen bonded hydroxyl species. Starting from previously determined water hydroxylation patterns on MgO(100), we performed ab initio thermodynamic calculations and vibrational analysis to compare with the vSFG observations. At ambient conditions (i.e., T = 298.15 K and pH2O = 32 mbar), the most thermodynamically favorable surface hydroxylation is found to be p(3 × 2) - 8H2O, involving a dissociation of 25% of the adsorbed water. Analysis of the vibrational density of states for this hydroxylation configuration yielded three different hydrogen bonding environments with the frequency of the peaks in very good agreement with the vSFG measurements. However, the non-H-bonded spectral feature on this surface is predicted to be similar to that expected for Mg(OH)2, a thermodynamically downhill alteration of the surface that must be independently ruled out before one can be fully confident in the apparent theory/vSFG agreement. Our study provides more insights into the ordering and structure of water monolayer at MgO(100) surface at ambient conditions and completes previous theoretical and experimental analysis performed at low temperature and ultra-high vacuum conditions.

9.
Phys Chem Chem Phys ; 26(13): 9867-9870, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477345

RESUMO

The generation and stabilization of gamma radiation-induced hydrogen atoms in gibbsite (Al(OH)3) nanoplates is directly related to the nature of residual ions from synthetic precursors used, whether nitrates or chlorides. The concentration of hydrogen atoms trapped in the interstitial layers of gibbsite is lower and decays faster in comparison to boehmite (AlOOH), which could affect the management of these materials in radioactive waste.

10.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349621

RESUMO

Many important chemical processes involve reactivity and dynamics in complex solutions. Gaining a fundamental understanding of these reaction mechanisms is a challenging goal that requires advanced computational and experimental approaches. However, important techniques such as molecular simulation have limitations in terms of scales of time, length, and system complexity. Furthermore, among the currently available solvation models, there are very few designed to describe the interaction between the molecular scale and the mesoscale. To help address this challenge, here, we establish a novel hybrid approach that couples first-principles plane-wave density functional theory with classical density functional theory (cDFT). In this approach, a region of interest described by ab initio molecular dynamics (AIMD) interacts with the surrounding medium described using cDFT to arrive at a self-consistent ground state. cDFT is a robust but efficient mesoscopic approach to accurate thermodynamics of bulk electrolyte solutions over a wide concentration range (up to 2M concentrations). Benchmarking against commonly used continuum models of solvation, such as SMD, as well as experiments, demonstrates that our hybrid AIMD-cDFT method is able to produce reasonable solvation energies for a variety of molecules and ions. With this model, we also examined the solvent effects on a prototype SN2 reaction of the nucleophilic attack of a chloride ion on methyl chloride in the solution. The resulting reaction pathway profile and the solution phase barrier agree well with experiment, showing that our AIMD/cDFT hybrid approach can provide insight into the specific role of the solvent on the reaction coordinate.

11.
J Am Chem Soc ; 145(5): 2930-2940, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696237

RESUMO

Surface terminations and defects play a central role in determining how water interacts with metal oxides, thereby setting important properties of the interface that govern reactivity such as the type and distribution of hydroxyl groups. However, the interconnections between facets and defects remain poorly understood. This limits the usefulness of conventional notions such as that hydroxylation is controlled by metal cation exposure at the surface. Here, using hematite (α-Fe2O3) as a model system, we show how oxygen vacancies overwhelm surface cation-dependent hydroxylation behavior. Synchrotron-based ambient-pressure X-ray photoelectron spectroscopy was used to monitor the adsorption of molecular water and its dissociation to form hydroxyl groups in situ on (001), (012), or (104) facet-engineered hematite nanoparticles. Supported by density functional theory calculations of the respective surface energies and oxygen vacancy formation energies, the findings show how oxygen vacancies are more prone to form on higher energy facets and induce surface hydroxylation at extremely low relative humidity values of 5 × 10-5%. When these vacancies are eliminated, the extent of surface hydroxylation across the facets is as expected from the areal density of exposed iron cations at the surface. These findings help answer fundamental questions about the nature of reducible metal oxide-water interfaces in natural and technological settings and lay the groundwork for rational design of improved oxide-based catalysts.

12.
Nat Mater ; 21(3): 345-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845364

RESUMO

Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO2) at 90 bar and 50 °C. On introduction of water-saturated scCO2, in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO3·3H2O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric-mass spectrometry indicate that the stoichiometry of AMC is MgCO3·xH2O (x = 0.5-1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems.


Assuntos
Dióxido de Carbono , Hidróxido de Magnésio , Dióxido de Carbono/química , Carbonatos , Hidróxido de Magnésio/química , Temperatura , Água/química
13.
Chem Rev ; 121(13): 8161-8233, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34143612

RESUMO

Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.

14.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37306956

RESUMO

Ultraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-. The O- radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O- oxidize the NO2- to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2- solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2- toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

15.
J Am Chem Soc ; 144(10): 4623-4632, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35239359

RESUMO

Transition metal oxide materials have attracted much attention for photoelectrochemical water splitting, but problems remain, e.g. the sluggish transport of excess charge carriers in these materials, which is not well understood. Here we use periodic, spin-constrained and gap-optimized hybrid density functional theory to uncover the nature and transport mechanism of holes and excess electrons in a widely used water splitting material, bulk-hematite (α-Fe2O3). We find that upon ionization the hole relaxes from a delocalized band state to a polaron localized on a single iron atom with localization induced by tetragonal distortion of the six surrounding iron-oxygen bonds. This distortion is responsible for sluggish hopping transport in the Fe-bilayer, characterized by an activation energy of 70 meV and a hole mobility of 0.031 cm2/(V s). By contrast, the excess electron induces a smaller distortion of the iron-oxygen bonds resulting in delocalization over two neighboring Fe units. We find that 2-site delocalization is advantageous for charge transport due to the larger spatial displacements per transfer step. As a result, the electron mobility is predicted to be a factor of 3 higher than the hole mobility, 0.098 cm2/(V s), in qualitative agreement with experimental observations. This work provides new fundamental insight into charge carrier transport in hematite with implications for its photocatalytic activity.

16.
Inorg Chem ; 61(45): 18077-18094, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321847

RESUMO

The origin and assignment of the complex main and satellite X-ray photoelectron spectroscopy (XPS) features of the cations in ionic compounds have been the subject of extensive theoretical studies using different methods. There is agreement that within a molecular orbital model, one needs to take into account different types of configurations. Specifically, those where a core electron is removed, but no other configuration changes are made and those where in addition to ionization, there are also shake or charge-transfer changes to the ionic configuration. However, there are strong disagreements about the assignment of XPS features to these configurations. The present work is directed toward resolving the origin of main and satellite features for the Ni 2p XPS of NiO based on ab initio molecular orbital wave functions (WFs) for a cluster model of NiO. A major problem in earlier ab initio XPS studies of ionic compounds has been the use of a common set of orbitals that was not able to properly describe all the ionic configurations that contribute to the full XPS spectra. This is resolved in the present work by using orbitals that are optimized for averages of the occupations of the different configurations that contribute to the XPS. The approach of using state-averaged (SA) orbitals is validated through comparisons between different averages and through use of higher order excitations in the WFs for the ionic states. It represents a major extension of our earlier work on the main and satellite features of the Fe 2p XPS of Fe2O3 and proves the reliability and the generality of the assignments of the character and origin of the different features of the XPS obtained with orbitals optimized for SAs. These molecular orbital methods permit the characterization of the ionic states in terms of the importance of shake excitations and of the coupling of ionization of 2p1/2 and 2p3/2 spin-orbit split sub shells. The work lays the foundation for definitive assignments of the character of main and satellite XPS features and points to their origin in the electronic structure of the material.

17.
Environ Sci Technol ; 56(6): 3801-3811, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35188748

RESUMO

Transformation of metastable Fe(III) oxyhydroxides is a prominent process in natural environments and can be significantly accelerated by the coexisting aqueous Fe(II) (Fe(II)aq). Recent evidence points to the solution mass transfer of labile Fe(III) (Fe(III)labile) as the primary intermediate species of general importance. However, a mechanistic aspect that remains unclear is the dependence of phase outcomes on the identity of the metastable Fe(III) oxyhydroxide precursor. Here, we compared the coupled evolution of Fe(II) species, solid phases, and Fe(III)labile throughout the Fe(II)-catalyzed transformation of lepidocrocite (Lp) versus ferrihydrite (Fh) at equal Fe(III) mass loadings with 0.2-1.0 mM Fe(II)aq at pH = 7.0. Similar to Fh, the conversion of Lp to product phases occurs by a dissolution-reprecipitation mechanism mediated by Fe(III)labile that seeds the nucleation of products. Though for Fh we observed a transformation to goethite (Gt), accompanied by the transient emergence and decline of Lp, for initial Lp we observed magnetite (Mt) as the main product. A linear correlation between the formation rate of Mt and the effective supersaturation in terms of Fe(III)labile concentration shows that Fe(II)-induced transformation of Lp into Mt is governed by the classical nucleation theory. When Lp is replaced by equimolar Gt, Mt formation is suppressed by opening a lower barrier pathway to Gt by heterogeneous nucleation and growth on the added Gt seeds. The collective findings add to the mechanistic understanding of factors governing phase selections that impact iron bioavailability, system redox potential, and the fate and transport of coupled elements.


Assuntos
Compostos Férricos , Minerais , Catálise , Óxido Ferroso-Férrico , Oxirredução
18.
Environ Sci Technol ; 56(2): 823-834, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35038870

RESUMO

Despite the biogeochemical importance of phosphate fate and transport in aquatic environments, little is known about how competition with other common aqueous oxyanions affects its retention by mineral surfaces. Here, we examined the competitive uptake of phosphate and silicate on goethite over a wide pH range, using batch measurements supported by DFT calculations. The results show selective adsorption of phosphate at pH < 4 and silicate at pH > 10 with little to no competitive effect. However, between 4 < pH < 10, the total phosphate and silicate loading was found to be almost equal to that of silicate loading from single-component solution, revealing a proportionate competition for surface site types and a competitive effect controlling their mutual retention. DFT-calculated adsorption energies and charge density redistributions for various surface complexes on different charged (101) and (210) facets are consistent with the trends observed in batch measurements, suggesting that the observed behavior reflects the primary controlling influence of goethite surface chemistry at the molecular scale. An important implication is that at the circumneutral pH in most environmental systems, where iron oxyhydroxides comprise much of the reactive interfacial area, unbound phosphate concentrations may be strongly controlled by dissolved silicate concentration, and vice versa.


Assuntos
Compostos de Ferro , Fosfatos , Adsorção , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Fosfatos/química , Silicatos
19.
Environ Sci Technol ; 56(8): 5029-5036, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390256

RESUMO

Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.

20.
Phys Chem Chem Phys ; 24(31): 18751-18763, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900042

RESUMO

Natural sulfidation of silver nanomaterials can passivate the surface, while preserving desirable optical and electrical properties, which is beneficial for limiting Ag+ release and cytotoxicity. But little is known at the atomic scale about silver sulfidation mechanisms, particularly on different crystallographic terminations. Using density functional theory (DFT) calculations, we examined the process of H2S sorption and reaction on Ag(100) surfaces relevant to Ag nanowires (AgNWs). DFT energy minimizations predict a strong dissociative chemisorption of H2S on the surface yielding co-adsorbed sulfide and hydrogen atoms in specific surface sites. However, nudged elastic band (NEB) calculations suggest relatively large activation energies for both the first and second dissociation steps, due in part to overcoming the energy to cleave the S-H bond and attendant site migration from an on-top Ag site position to a hollow site position of the bound S atom. The large barriers associated with the dissociative chemisorption reaction for gas-phase H2S points to the importance of including thermochemical contributions and the influence of other components in more complex environmental media such as air or water to help complete the mechanistic picture of silver sulfidation and passivation for realistic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA