Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 31(5): 055703, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31618711

RESUMO

A strategy to reduce implant-related infections is the inhibition of the initial bacterial implant colonization by biomaterials containing silver (Ag). The antimicrobial efficacy of such biomaterials can be increased by surface enhancement (nanosilver) or by creating a sacrificial anode system for Ag. Such a system will lead to an electrochemically driven enhanced Ag ion release due to the presence of a more noble metal. Here we combined the enlarged surface of nanoparticles (NP) with a possible sacrificial anode effect for Ag induced by the presence of the electrochemically more noble platinum (Pt) in physical mixtures of Ag NP and Pt NP dispersions. These Ag NP/Pt NP mixtures were compared to the same amounts of pure Ag NP in terms of cell biological responses, i.e. the antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as the viability of human mesenchymal stem cells (hMSC). In addition, Ag NP was analyzed by ultraviolet-visible (UV-vis) spectroscopy, cyclic voltammetry, and atomic absorption spectroscopy. It was found that the dissolution rate of Ag NP was enhanced in the presence of Pt NP within the physical mixture compared to a dispersion of pure Ag NP. Dissolution experiments revealed a fourfold increased Ag ion release from physical mixtures due to enhanced electrochemical activity, which resulted in a significantly increased toxicity towards both bacteria and hMSC. Thus, our results provide evidence for an underlying sacrificial anode mechanism induced by the presence of Pt NP within physical mixtures with Ag NP. Such physical mixtures have a high potential for various applications, for example as antimicrobial implant coatings in the biomedicine or as bactericidal systems for water and surface purification in the technical area.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Platina/química , Prata/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroquímica , Eletrodos , Humanos , Células-Tronco Mesenquimais , Prata/farmacologia , Solubilidade
2.
Nanotechnology ; 30(30): 305101, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959494

RESUMO

Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Osteogênese/efeitos dos fármacos , Platina/farmacologia , Prata/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
3.
Sci Rep ; 10(1): 21591, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299057

RESUMO

Health risks from particles are a priority challenge to health protection at work. Despite the ubiquitous exposure to a wide range of particles and the many years of research in this field, there are fundamental unresolved questions regarding the prevention of particle-related respiratory diseases. Here, the highly relevant particulate material silicon dioxide was analyzed with emphasis on defined size and shape. Silica particles were prepared with different size and shape: Spheres (NS nanospheres 60 nm; SMS submicrospheres 230 nm; MS microspheres 430 nm) and rods (SMR submicrorods with d = 125 nm, L = 230 nm; aspect ratio 1:1.8; MR microrods with d = 100 nm, L = 600 nm; aspect ratio 1:6). After an in-depth physicochemical characterization, their effects on NR8383 alveolar macrophages were investigated. The particles were X-ray amorphous, well dispersed, and not agglomerated. Toxic effects were only observed at high concentrations, i.e. ≥ 200 µg mL-1, with the microparticles showing a stronger significant effect on toxicity (MS≈MR > SMR≈SMS≈NS) than the nanoparticles. Special attention was directed to effects in the subtoxic range (less than 50% cell death compared to untreated cells), i.e. below 100 µg mL-1 where chronic health effects may be expected. All particles were readily taken up by NR8383 cells within a few hours and mainly found associated with endolysosomes. At subtoxic levels, neither particle type induced strongly adverse effects, as probed by viability tests, detection of reactive oxygen species (ROS), protein microarrays, and cytokine release (IL-1ß, GDF-15, TNF-α, CXCL1). In the particle-induced cell migration assay (PICMA) with leukocytes (dHL-60 cells) and in cytokine release assays, only small effects were seen. In conclusion, at subtoxic concentrations, where chronic health effects may be expected, neither size and nor shape of the synthesized chemically identical silica particles showed harmful cell-biological effects.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Microesferas , Nanosferas/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos Alveolares/metabolismo , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Beilstein J Nanotechnol ; 9: 2763-2774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498649

RESUMO

For a comparative cytotoxicity study, nanoparticles of the noble metals Rh, Pd, Ag, Pt, and Au (spherical, average diameter 4 to 8 nm) were prepared by reduction in water and colloidally stabilized with poly(N-vinyl pyrrolidone) (PVP). Thus, their shape, size, and surface functionalization were all the same. Size and morphology of the nanoparticles were determined by dynamic light scattering (DLS), analytical disc centrifugation (differential centrifugal sedimentation, DCS), and high-resolution transmission electron microscopy (HRTEM). Cell-biological experiments were performed to determine the effect of particle exposure on the viability of human mesenchymal stem cells (hMSCs). Except for silver, no adverse effect of any of the metal nanoparticles was observed for concentrations up to 50 ppm (50 mg L-1) incubated for 24 h, indicating that noble metal nanoparticles (rhodium, palladium, platinum, gold) that do not release ions are not cytotoxic under these conditions.

5.
Toxicol In Vitro ; 29(5): 997-1005, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25896209

RESUMO

Inflammation is a decisive pathophysiologic mechanism of particle toxicity and accumulation of neutrophils in the lung is believed to be a crucial step in this process. This study describes an in vitro model for investigations of the chemotactic attraction of neutrophils in response to particles using permanent cell lines. We challenged NR8383 rat macrophages with particles that were characterized concerning chemical nature, crystallinity, and size distribution in the dry state and in the culture medium. The cell supernatants were used to investigate migration of differentiated human leukemia cells (dHL-60 cells). The dose range for the tests was determined using an impedance-based Real-Time Cell Analyzer. The challenge of NR8383 cells with 32-96 µg cm(-2) coarse and nanosized particles resulted in cell supernatants which induced strong and dose-dependent migration of dHL-60 cells. Quartz caused the strongest effects - exceeding the positive control "fetal calf serum" (FCS) several-fold, followed by silica, rutile, carbon black, and anatase. BaSO4 served as inert control and induced no cell migration. Particles caused NR8383 cells to secrete chemotactic compounds. The assay clearly distinguished between the particles of different inflammatory potential in a highly reproducible way. Specificity of the test is suggested by negative results with BaSO4.


Assuntos
Ensaios de Migração Celular , Nanopartículas/toxicidade , Animais , Sulfato de Bário/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Ratos , Dióxido de Silício/toxicidade , Fuligem/toxicidade , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA