Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 249(0): 69-83, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37794776

RESUMO

Hydrophobic molecules are by definition difficult to hydrate. Previous studies in the area of hydrophobic hydration have therefore often relied on using amphiphilic molecules where the hydrophilic part of a molecule enabled the solubility in liquid water. Here, we show that the hydrophobic adamantane (C10H16) molecule can be fully hydrated through vapour codeposition with water onto a cryogenic substrate at 80 K resulting in the matrix isolation of adamantane in amorphous ice. Using neutron diffraction in combination with the isotopic substitution method and the empirical potential structure refinement technique, we find that the first hydration shell of adamantane is well structured consisting of a hydrogen-bonded cage of 28 water molecules that is also found in cubic structure II clathrate hydrates. The four hexagonal faces of the 51264 cage are situated above the four methine (CH) groups of adamantane whereas the methylene (CH2) groups are positioned below the edges of two adjoining pentagonal faces. The oxygen atoms of the 28 water molecules can be categorised on the basis of symmetry equivalences as twelve A, twelve B and four C oxygens. The water molecules of the first hydration shell display orientations consistent with those expected for a clathrate-hydrate-type cage, but also unfavourable ones with respect to the hydrogen bonding between the water molecules. Annealing the samples at 140 K, which is just below the crystallisation temperature of the matrix, removes the unfavourable orientations and leads to a slight increase in the structural order of the first hydration shell. The very closest water molecules display a tendency for their dipole moments to point towards the adamantane which is attributed to steric effects. Other than this, no significant polarisation effects are observed which is consistent with weak interactions between adamantane and the amorphous ice matrix. FT-IR spectroscopy shows that the incorporation of adamantane into amorphous ice leads to a weakening of the hydrogen bonds. In summary, the matrix-isolation of the highly symmetric adamantane in amorphous ice provides an interesting test case for hydrophobic hydration. Studying the structure and spectroscopic properties of water at the interface with hydrophobic hydrocarbons is also relevant for astrophysical environments, such as comets or the interstellar medium, where amorphous ice and hydrocarbons have been shown to coexist in large quantities.

2.
Inorg Chem ; 60(9): 6319-6326, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852802

RESUMO

Modern functional glasses have been prepared from a wide range of precursors, combining the benefits of their isotropic disordered structures with the innate functional behavior of their atomic or molecular building blocks. The enhanced ionic conductivity of glasses compared to their crystalline counterparts has attracted considerable interest for their use in solid-state batteries. In this study, we have prepared the mixed molecular glass Ga2I3.17 and investigated the correlations between the local structure, thermal properties, and ionic conductivity. The novel glass displays a glass transition at 60 °C, and its molecular make-up consists of GaI4- tetrahedra, Ga2I62- heteroethane ions, and Ga+ cations. Neutron diffraction was employed to characterize the local structure and coordination geometries within the glass. Raman spectroscopy revealed a strongly localized nonmolecular mode in glassy Ga2I3.17, coinciding with the observation of two relaxation mechanisms below Tg in the AC admittance spectra.

3.
J Chem Phys ; 154(13): 134504, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832256

RESUMO

Ice V is a structurally highly complex material with 28 water molecules in its monoclinic unit cell. It is classified as a hydrogen-disordered phase of ice. Yet, some of its hydrogen-bonded water molecules display significant orientational order. Upon cooling pure ice V, additional orientational ordering cannot be achieved on the experimental time scale. Doping with hydrochloric acid has been shown to be most effective in enabling the phase transition of ice V to its hydrogen-ordered counterpart ice XIII. Here, we present a detailed crystallographic study of this phase transition investigating the effects of hydrochloric and hydrofluoric acid as well as lithium and potassium hydroxide doping. The magnitudes of the stepwise changes in the lattice constants during the phase transition are found to be more sensitive indicators for the extent of hydrogen order in ice XIII than the appearance of new Bragg peaks. Hydrofluoric acid and lithium hydroxide doping enable similar ordering processes as hydrochloric acid but with slower kinetics. The various possible space groups and ordered configurations of ice XIII are examined systematically, and the previously determined P21/a structure is confirmed. Interestingly, the partial hydrogen order already present in ice V is found to perpetuate into ice XIII, and these ordering processes are found to be independent of pressure. Overall, the hydrogen ordering goes along with a small increase in volume, which appears to be the origin of the slower hydrogen-ordering kinetics under pressure. Heating pressure-quenched samples at ambient pressure revealed low-temperature "transient ordering" features in both diffraction and calorimetry.

4.
J Phys Chem A ; 124(24): 5015-5022, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32441526

RESUMO

Carbon and ice make up a substantial proportion of our universe. Recent space exploration has shown that these two chemical species often coexist such as on comets and asteroids and in the interstellar medium. Here, we prepare mixtures of C60 fullerene and H2O by vapor codeposition at 90 K with molar C60/H2O ratios ranging from 1:1254 to 1:5. The C60 percolation threshold is found between the 1:132 and 1:48 samples, corresponding to a transition from matrix-isolated C60 molecules to percolating C60 domains that confine H2O. Below this threshold, the crystallization and thermal desorption properties of H2O are not significantly affected by C60, whereas the crystallization temperature of H2O is shifted toward higher temperatures for the C60-rich samples. These C60-rich samples also display exotherms corresponding to the crystallization of C60 as the two components undergo phase separation. More than 60 vol % C60 is required to significantly affect the desorption properties of H2O. A thick blanket of C60 on top of pure amorphous ice is found to display large cracks due to water desorption. These findings may help us to understand the recently observed unusual surface features and the H2O weather cycle on the 67P/Churyumov-Gerasimenko comet.

5.
Phys Chem Chem Phys ; 21(38): 21663-21664, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531423

RESUMO

Correction for 'Surface heterogeneity and inhomogeneous broadening of vibrational line profiles' by Skandar Taj et al., Phys. Chem. Chem. Phys., 2017, 19, 7990-7995.

6.
J Chem Phys ; 151(13): 134505, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594355

RESUMO

Vapor-deposited amorphous ice, traditionally called amorphous solid water (ASW), is one of the most abundant materials in the universe and a prototypical material for studying physical vapor-deposition processes. Its complex nature arises from a strong tendency to form porous structures combined with complicated glass transition, relaxation, and desorption behavior. To gain further insights into the various gas-trapping environments that exist in ASW and hence its morphology, films in the 25-100 µm thickness range were codeposited with small amounts of gaseous "nanoprobes" including argon, methane, helium, and carbon dioxide. Upon heating in the 95-185 K temperature range, three distinct desorption processes are observed which we attribute to the gas desorption out of open cracks above 100 K, from internal voids that collapse due to the glass transition at ∼125 K and finally from fully matrix-isolated gas induced by the irreversible crystallization to stacking disordered ice (ice Isd) at ∼155 K. Nanoscale films of ASW have only displayed the latter desorption process which means that the first two desorption processes arise from the macroscopic dimensions of our ASW films. Baffling the flow of water vapor toward the deposition plate greatly reduces the first desorption feature, and hence the formation of cracks, but it significantly increases the amount of matrix-isolated gas. The complex nature in which ASW can trap gaseous species is thought to be relevant for a range of cosmological processes.

7.
J Chem Phys ; 148(24): 244507, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960300

RESUMO

Doping the hydrogen-disordered phases of ice V, VI, and XII with hydrochloric acid (HCl) has led to the discovery of their hydrogen-ordered counterpart ices XIII, XV, and XIV. Yet, the mechanistic details of the hydrogen-ordering phase transitions are still not fully understood. This includes, in particular, the role of the acid dopant and the defect dynamics that it creates within the ices. Here we investigate the effects of a wide range of acid and base dopants on the hydrogen ordering of ices V and VI with calorimetry and X-ray diffraction. Surprisingly, lithium-hydroxide doping achieves a performance comparable to hydrofluoric-acid doping in ice V, but it is ineffective in the case of ice VI. Ice V is therefore the first phase of ice that can be hydrogen-ordered with both acid and base doping. Hydrobromic-acid doping facilitates hydrogen ordering of ice VI, but it is ineffective in the case of ice V. HCl is reaffirmed to be the most effective for both phases which is attributed to a favorable combination of high solubility and strong acid properties. Sodium-hydroxide, potassium-hydroxide (as previously shown), and perchloric-acid doping are ineffective for both phases. These findings highlight the need for future computational studies but also raise the question why lithium hydroxide is the best-performing alkali hydroxide for hydrogen-ordering ice V whereas potassium-hydroxide doping is most effective for the "ordinary" ice Ih.

8.
Phys Chem Chem Phys ; 19(11): 7990-7995, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28263326

RESUMO

The surface heterogeneity of amorphous silica (aSiO2) has been probed using coverage dependent temperature programmed desorption (TPD) of a simple probe molecule, carbon monoxide (CO). The resulting distribution of interaction energies is the foundation from which an environmentally broadened vibrational line profile synthesis has been undertaken. These simulations are compared with measured line profiles recorded at 0.1 cm-1 resolution using reflection-absorption infrared spectroscopy (RAIRS). A comparison of such line profile synthesis for CO on amorphous silica and on porous amorphous solid water (p-ASW) is also reported and conclusions are drawn as to the vibrational relaxation and surface dynamics of the CO molecule on the two surfaces.

9.
Phys Chem Chem Phys ; 18(7): 5159-71, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26700324

RESUMO

Reflection absorption infrared spectroscopy (RAIRS) is used to show that when 20 monolayer (ML) films of solid CO are laid down on solid water substrates at 20 to 24 K, the films polarize spontaneously. CO films were prepared on three types of water ice: porous amorphous solid water (CO-pASW), crystalline water (CO-CSW) and compact amorphous solid water (CO-cASW) with corresponding fields of 3.76 ± 0.15 × 10(7) V m(-1) for CO-pASW, 2.87 ± 0.15 × 10(7) V m(-1) for CO-CSW and 1.98 ± 0.15 × 10(7) V m(-1) for CO-cASW. For comparison, CO laid down on SiO2 yields 3.8 ± 0.15 × 10(7) V m(-1). Our results are of relevance to an understanding of the chemistry and physics of dense star-forming regions in the interstellar medium, in which dust particles become coated with solid CO on a layer of cASW. The polarization charge which accumulates on the CO surface acts as a catalyst for the removal of electrons and ions from the medium and may account for the low degree of ionization observed in these regions, a feature which is an important factor for the rate of star formation.

10.
Phys Chem Chem Phys ; 18(46): 31930-31935, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27844080

RESUMO

Water ice is the most abundant solid in the Universe. Understanding the formation, structure and multiplicity of physicochemical roles for water ice in the cold, dense interstellar environments in which it is predominantly observed is a crucial quest for astrochemistry as these are regions active in star and planet formation. Intuitively, we would expect the mobility of water molecules deposited or synthesised on dust grain surfaces at temperatures below 50 K to be very limited. This work delves into the thermally-activated mobility of H2O molecules on model interstellar grain surfaces. The energy required to initiate this process is studied by reflection-absorption infrared spectroscopy of small quantities of water on amorphous silica and highly oriented pyrolytic graphite surfaces as the surface is annealed. Strongly non-Arrhenius behaviour is observed with an activation energy of 2 kJ mol-1 on the silica surface below 25 K and 0 kJ mol-1 on both surfaces between 25 and 100 K. The astrophysical implication of these results is that on timescales shorter than that estimated for the formation of a complete monolayer of water ice on a grain, aggregation of water ice will result in a non-uniform coating of water, hence leaving bare grain surface exposed. Other molecules can thus be formed or adsorbed on this bare surface.

11.
Phys Chem Chem Phys ; 17(44): 30177-87, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26419192

RESUMO

Reflection-absorption infrared spectroscopy (RAIRS) is shown to provide a means of observing the spontelectric phase of matter, the defining characteristic of which is the occurrence of a spontaneous and powerful static electric field within a film of material. The presence of such a field is demonstrated here through the study of longitudinal-transverse optical splitting in RAIR spectra in films of carbon monoxide, based upon the deposition temperature dependence of this splitting. Analysis of spectral data, in terms of the vibrational Stark effect, allows the measurement of the polarization of spontelectric films, showing for example that solid carbon monoxide at 20 K may maintain a spontelectric field of 3.78 × 10(7) V m(-1), representing a polarization of 3.34 × 10(-4) cm(-2). We comment on the astrophysical implications of polarized carbon monoxide ices, on the surface of cosmic grains in star-forming regions.

12.
Phys Chem Chem Phys ; 17(32): 20971-80, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214796

RESUMO

Reflection-absorption infrared spectroscopy (RAIRS) of nitrous oxide (N2O) thin films is shown to provide an independent means of observing the spontelectric state, the first new structural phase of matter, with unique electrical properties, to have emerged in decades. The presence of a spontaneous and powerful static electric field within the film, the defining characteristic of spontelectric solids, is demonstrated through observations of longitudinal-transverse optical (LO-TO) splitting in RAIR spectra, using an analysis based on the vibrational Stark effect. In particular the dependence of the LO-TO splitting on the film deposition temperature may be wholly attributed to the known temperature dependence of the spontelectric field.

13.
Phys Chem Chem Phys ; 16(43): 23843-53, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25274432

RESUMO

The recent discovery of a new class of solids displaying bulk spontaneous electric fields as high as 10(8) V m(-1), so-called 'spontelectrics', poses fundamental and unresolved problems in solid state physics. The purpose of the present work is to delve more deeply into the nature of the interactions which give rise to the spontelectric effect in films of nitrous oxide (N2O), by observing the variation of the spontaneous field as the N2O molecules are physically removed from one another by dilution in Xe. Data, obtained using the ASTRID storage ring, are presented for films diluted by factors ξ = Xe/N2O of 0.9 to 67, at deposition temperatures of 38 K, 44 K and 48 K, where films are laid down by deposition from a gas mixture. Results show that the spontelectric field decreases as ξ increases and that at ξ = 67 for 44 K deposition, the spontelectric effect is absent. Reflection-absorption infrared spectroscopy (RAIRS) data are also reported, providing insight into the structure of Xe/N2O films and specifically showing that N2O remains dispersed in the Xe/N2O films prepared here. A simplified theoretical model is developed which illustrates that electric fields can be understood in terms of dilution-dependent dipole orientation. This model is used to reproduce experimental data up to an average molecular separation, s, of ≥1.25 nm apart, ∼4 times that associated with pure solid N2O. The disappearance of the spontelectric effect at larger average distances of separation, between s = 1.25 nm and s = 1.75 nm, is a phenomenon which cannot be described by any existing model but which shows that dipole-dipole interactions are an essential ingredient for the creation of the spontelectric state.

14.
Science ; 379(6631): 474-478, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730416

RESUMO

Amorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling "ordinary" ice Ih at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that H2O can be a high-energy geophysical material.

15.
Nat Commun ; 12(1): 3162, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039987

RESUMO

Ice is a material of fundamental importance for a wide range of scientific disciplines including physics, chemistry, and biology, as well as space and materials science. A well-known feature of its phase diagram is that high-temperature phases of ice with orientational disorder of the hydrogen-bonded water molecules undergo phase transitions to their ordered counterparts upon cooling. Here, we present an example where this trend is broken. Instead, hydrochloric-acid-doped ice VI undergoes an alternative type of phase transition upon cooling at high pressure as the orientationally disordered ice remains disordered but undergoes structural distortions. As seen with in-situ neutron diffraction, the resulting phase of ice, ice XIX, forms through a Pbcn-type distortion which includes the tilting and squishing of hexameric clusters. This type of phase transition may provide an explanation for previously observed ferroelectric signatures in dielectric spectroscopy of ice VI and could be relevant for other icy materials.

16.
IUCrJ ; 7(Pt 5): 782-783, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939269

RESUMO

Maynard-Casely and co-workers [IUCrJ (2020). 7, 844-851.] investigate two of Pluto's most abundant minerals with neutron diffraction. The new results will be key to understanding the geology of our distant neighbour and represent a significant advance in the emerging field of small-molecule geology.

17.
J Phys Chem Lett ; 11(3): 1106-1111, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31972078

RESUMO

The recent discovery of a low-temperature endotherm upon heating hydrochloric-acid-doped ice VI has sparked a vivid controversy. The two competing explanations aiming to explain its origin range from a new distinct crystalline phase of ice to deep-glassy states of the well-known ice VI. Problems with the slow kinetics of deuterated phases have been raised, which we circumvent here entirely by simultaneously measuring the inelastic neutron spectra and neutron diffraction data of H2O samples. These measurements support the deep-glassy ice VI scenario and rule out alternative explanations. Additionally, we show that the crystallographic model of D2O ice XV, the ordered counterpart of ice VI, also applies to the corresponding H2O phase. The discovery of deep-glassy ice VI now provides a fascinating new example of ultrastable glasses that are encountered across a wide range of other materials.

18.
Nat Rev Chem ; 8(4): 234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548863
19.
Nat Rev Chem ; 8(3): 156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418659
20.
Nat Rev Chem ; 8(6): 404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831137
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA