Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(9): 3961-3971, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589321

RESUMO

While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.


Assuntos
Celulose , Poli A , Humanos , Hidroxibutiratos , Impressão Tridimensional
2.
Small ; 17(26): e2101337, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028975

RESUMO

Molecular photoswitches that can reversibly change color upon irradiation are promising materials for applications in molecular actuation and photoresponsive materials. However, the fabrication of photochromic devices is limited to conventional approaches such as mold casting and spin-coating, which cannot fabricate complex structures. Reported here is the first photoresist for direct laser writing of photochromic 3D micro-objects via two-photon polymerization. The integration of photochromism into thiol-ene photo-clickable resins enables rapid two-photon laser processing of highly complex microstructures and facile postmodification using a series of donor-acceptor Stenhouse adduct (DASA) photoswitches with different excitation wavelengths. The versatility of thiol-ene photo-click reactions allows fine-tuning of the network structure and physical properties as well as the type and concentration of DASA. When exposed to visible light, these microstructures exhibit excellent photoresponsiveness and undergo reversible color-changing via photoisomerization. It is demonstrated that the fluorescence variations of DASAs can be used as a reporter of photoswitching and thermal recovery, allowing the reading of DASA-containing sub-micrometric structures in 3D. This work delivers a new approach for custom microfabrication of 3D photochromic objects with molecularly engineered color and responsiveness.

3.
Biomacromolecules ; 22(2): 629-639, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33347749

RESUMO

Matrix metalloproteinase 9 (MMP-9) has a key role in many biological processes, and while it is crucial for a normal immune response, excessive release of this enzyme can lead to severe tissue damage, as evidenced by proteolytic digestion and perforation of the cornea during infectious keratitis. Current medical management strategies for keratitis mostly focus on antibacterial effects, but largely neglect the role of excess MMP activity. Here, a cyclic tissue inhibitor of metalloproteinase (TIMP) peptidomimetic, which downregulated MMP-9 expression both at the mRNA and protein levels as well as MMP-9 activity in THP-1-derived macrophages, is reported. A similar downregulating effect could also be observed on α smooth muscle actin (α-SMA) expression in fibroblasts. Furthermore, the TIMP peptidomimetic reduced Pseudomonas aeruginosa-induced MMP-9 activity in an ex vivo porcine infectious keratitis model and histological examinations demonstrated that a decrease of corneal thickness, associated with keratitis progression, was inhibited upon peptidomimetic treatment. The presented approach to reduce MMP-9 activity thus holds great potential to decrease corneal tissue damage and improve the clinical success of current treatment strategies for infectious keratitis.


Assuntos
Ceratite , Peptidomiméticos , Animais , Ceratite/tratamento farmacológico , Metaloproteinase 2 da Matriz , Peptidomiméticos/farmacologia , Suínos , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidores Teciduais de Metaloproteinases
4.
Langmuir ; 36(40): 11787-11797, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32936649

RESUMO

We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.

5.
Langmuir ; 35(5): 1882-1894, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30153734

RESUMO

Biofouling on silicone implants causes serious complications such as fibrotic encapsulation, bacterial infection, and implant failure. Here we report the development of antifouling, antibacterial silicones through covalent grafting with a cell-membrane-inspired zwitterionic gel layer composed of 2-methacryolyl phosphorylcholine (MPC). To investigate how substrate properties influence cell adhesion, we cultured human-blood-derived macrophages and Escherichia coli on poly(dimethylsiloxane) (PDMS) and MPC gel surfaces with a range of 0.5-50 kPa in stiffness. Cells attach to glass, tissue culture polystyrene, and PDMS surfaces, but they fail to form stable adhesions on MPC gel surfaces due to their superhydrophilicity and resistance to biofouling. Cytokine secretion assays confirm that MPC gels have a much lower potential to trigger proinflammatory macrophage activation than PDMS. Finally, modification of the PDMS surface with a long-term stable hydrogel layer was achieved by the surface-initiated atom-transfer radical polymerization (SI-ATRP) of MPC and confirmed by the decrease in contact angle from 110 to 20° and the >70% decrease in the attachment of macrophages and bacteria. This study provides new insights into the design of antifouling and antibacterial interfaces to improve the long-term biocompatibility of medical implants.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/síntese química , Ativação de Macrófagos/efeitos dos fármacos , Metacrilatos/farmacologia , Fosforilcolina/análogos & derivados , Adsorção , Antibacterianos/química , Antibacterianos/toxicidade , Dimetilpolisiloxanos/toxicidade , Escherichia coli/fisiologia , Fibroblastos/efeitos dos fármacos , Géis/química , Géis/farmacologia , Géis/toxicidade , Humanos , Metacrilatos/química , Metacrilatos/toxicidade , Fosforilcolina/química , Fosforilcolina/farmacologia , Fosforilcolina/toxicidade , Proteínas/química
6.
Clin Oral Implants Res ; 30(1): 99-110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30521101

RESUMO

OBJECTIVE: The main objective of this study was to demonstrate that dental implants made from ultrafine-grain titanium (UFG-Ti) can be created that replicate state of the art surfaces of standard coarse-grain titanium (Ti), showing excellent cytocompatibility and osseointegration potential while also providing improved mechanical properties. MATERIAL AND METHODS: UFG-Ti was prepared by continuous equal channel angular processing (ECAP), and surfaces were treated by sandblasting and acid etching. Mechanical properties (tensile and fatigue strength), wettability, and roughness parameters were evaluated. Human trabecular bone-derived osteoblast precursor cells (HBCs) were cultured on all samples to examine cytocompatibility and mineralization after 4 and 28 days, respectively. Biomechanical pull-out measurements were performed in a rabbit in vivo model 4 weeks after implantation. RESULTS: Both yield and tensile strength as well as fatigue endurance were higher for UFG-Ti compared to Ti by 40%, 45%, and 34%, respectively. Fatigue endurance was slightly reduced following surface treatment. Existing surface treatment protocols could be applied to UFG-Ti and resulted in similar roughness and wettability as for standard Ti. Cell attachment and spreading were comparable on all samples, but mineralization was higher for the surfaces with hydrophilic treatment with no significant difference between UFG-Ti and Ti. Pull-out tests revealed that osseointegration of surface-treated UFG-Ti was found to be similar to that of surface-treated Ti. CONCLUSION: It could be demonstrated that existing surface treatments for Ti can be translated to UFG-Ti and, furthermore, that dental implants made from surface-treated UFG-Ti exhibit superior mechanical properties while maintaining cytocompatibility and osseointegration potential.


Assuntos
Prótese Ancorada no Osso , Implantes Dentários , Titânio , Animais , Coagulação Sanguínea , Cálcio/análise , Comunicação Celular , Células Cultivadas , Imunofluorescência , Microscopia Eletrônica de Varredura , Osseointegração , Osteoblastos/fisiologia , Coelhos , Propriedades de Superfície , Resistência à Tração
7.
Langmuir ; 33(35): 8594-8605, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28792773

RESUMO

Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.


Assuntos
Oxazóis/química , Adsorção , Animais , Células Cultivadas , Humanos , Polietilenoglicóis , Polilisina , Polímeros , Ratos , Reprodutibilidade dos Testes , Propriedades de Superfície
8.
Radiology ; 281(2): 436-443, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27152553

RESUMO

Purpose To determine whether magnetization transfer (MT) magnetic resonance (MR) imaging may serve as a quantitative measure of the degree of fiber formation during differentiation of muscle precursor cells into engineered muscle tissue as a potential noninvasive monitoring tool in mice. Materials and Methods The study was approved by the local ethics committee (no. StV 01/2008) and the local Veterinary Office (license no. 99/2013). Human muscle progenitor cells (hMPCs) derived from rectus abdominis muscles were subcutaneously injected into CD-1 nude mice (CD-1 nude mice, Crl:CD1-Foxn1nu; Charles River Laboratories, Wilmington, Mass) for development of muscle tissue. The mice underwent MR imaging examinations at 4.7 T at days 1, 3, 7, 14, 21, and 28 after cell transplantation by using a gradient-echo sequence with an MT prepulse and systematic variation of the off-resonance frequency (50-37 500 Hz) at an amplitude of 800°. Direct saturation was estimated from a Bloch equation simulation. The MT ratio (MTR) was correlated to immunohistochemistry findings, Western blot results, and results of myography. Data were analyzed by using one-way or two-way analysis of variance with the Sidak or Tukey multiple comparisons test. Results In the reference skeletal muscle, highest MT was found for 2500 Hz off-resonance frequency with an MTR ± standard deviation of 57.5% ± 3.5. The developing muscle tissue exhibited increasing MT values during the 28 days of myogenic in vivo differentiation and did not reach the values of native skeletal muscle. Mean values of MTR (2500 Hz) for hMPCs were 27.6% ± 6.3 (day 1), 24.7% ± 8.7 (day 3), 28.2% ± 5.7 (day 7), 35.9% ± 5.0 (day 14), 37.0% ± 7.9 (day 21), and 39.9% ± 8.1 (day 28). The results from MT MR imaging correlated qualitatively well with muscle tissue expression of specific skeletal markers, as well as muscle contractility. Conclusion MT MR imaging may be used to noninvasively monitor the process of myogenic in vivo differentiation of hMPCs as a biomarker of the quantity and quality of muscle fiber formation. © RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/citologia , Mioblastos/citologia , Animais , Biomarcadores/análise , Western Blotting , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus
9.
MAGMA ; 29(5): 751-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27094553

RESUMO

OBJECTIVE: Diffusion-weighted magnetic resonance imaging (DW-MRI) combined with intravoxel incoherent motion (IVIM) analysis may be applied for assessment of organ lesions, diffuse parenchymal pathologies, and therapy monitoring. The aim of this study was to determine IVIM reference parameters of abdominal organs for translational research in a large cohort of C57Bl/6 laboratory mice. MATERIALS AND METHODS: Anesthetized mice (n = 29) were measured in a 4.7 T small-animal MR scanner with a diffusion-weighted echo-planar imaging sequence at the [Formula: see text]-values 0, 13, 24, 55, 107, 260, 514, 767, 1020 s/mm(2). IVIM analysis was conducted on the liver, spleen, renal medulla and cortex, pancreas, and small bowel with computation of the true tissue diffusion coefficient [Formula: see text], the perfusion fraction [Formula: see text], and the pseudodiffusion coefficient [Formula: see text]. Microvessel density (MVD) was assessed by immunohistochemistry (IHC) against panendothelial cell antigen CD31. RESULTS: Mean values of the different organs [[Formula: see text] (10(-3) mm(2)/s); [Formula: see text] (%); [Formula: see text] (10(-3) mm(2)/s); MVD (MV/mm(2))]: liver 1.15 ± 0.14; 14.77 ± 6.15; 50.28 ± 33.21, 2008.48 ± 419.43, spleen 0.55 ± 0.12; 9.89 ± 5.69; 24.46 ± 17.31; n.d., renal medulla 1.50 ± 0.20; 14.63 ± 4.07; 35.50 ± 18.01; 1231.88 ± 290.61, renal cortex 1.34 ± 0.18; 10.83 ± 3.70; 16.74 ± 6.74; 810.09 ± 193.50, pancreas 1.23 ± 0.22; 20.12 ± 7.46; 29.35 ± 17.82, 591.15 ± 86.25 and small bowel 1.06 ± 0.13; 16.48 ± 3.63; 15.31 ± 7.00; 420.50 ± 168.42. Unlike [Formula: see text] and [Formula: see text], [Formula: see text] correlates significantly with MVD (r = 0.90, p = 0.037). CONCLUSION: This systematic evaluation of murine abdominal organs with IVIM and MVD analysis allowed to establish reference parameters for future DW-MRI translational research studies on small-animal disease models.


Assuntos
Abdome/diagnóstico por imagem , Microcirculação , Movimento (Física) , Abdome/patologia , Animais , Difusão , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Intestino Delgado/diagnóstico por imagem , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Microvasos , Pâncreas/diagnóstico por imagem , Perfusão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Baço/diagnóstico por imagem
10.
Radiology ; 274(3): 800-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25423144

RESUMO

PURPOSE: To demonstrate the feasibility of in vivo monitoring of the myogenic differentiation process from human muscle precursor cells to mature skeletal muscle tissue by measuring characteristic magnetic resonance (MR) imaging relaxation and diffusion properties as a potential noninvasive diagnostic tool in muscle cell therapy. MATERIALS AND METHODS: The study was approved by the ethics committee for studies in humans and the animal care committee. The hypothesis was tested by means of subcutaneous injection of human muscle precursor cells from the rectus abdominis muscle into nude mice (n = 18). Animals injected with human fibroblasts, prostate cancer cells, or collagen served as control animals (four in each group). T1, T2, T2*, and apparent diffusion coefficients (ADCs) were measured at 4.7-T MR imaging. MR imaging parameters were statistically evaluated by using analysis of variance with Bonferroni correction. The engineered muscle was characterized by means of immunofluorescence, Western blot, and contraction assays. RESULTS: Muscle tissue in the early stages of the differentiation process exhibited distinctly higher T1 (mean ± standard deviation, 2242 msec ± 116), T2 (224 msec ± 18), and T2* (33.3 msec ± 3.6) values and ADCs (1.53 × 10(-3) mm(2)/sec ± 0.03) compared with those of skeletal muscle. The muscle precursor cells exhibited a nonspecific pattern compared with that in control animals in the early stages. During differentiation, the relaxation and diffusion parameters decreased and approached the values for mature skeletal muscle tissue: T1, 1386 msec ± 88; T2, 32.0 msec ± 4.3; T2*, 10.8 msec ± 0.8; ADC, 1.39 × 10(-3) mm(2)/sec ± 0.02 (reference erector spinae muscle tissue: T1, 1417 msec ± 106; T2, 31.0 msec ± 2.4; T2*, 11.3 msec ± 1.7; and ADC, 1.40 × 10(-3) mm(2)/sec ± 0.03). CONCLUSION: MR imaging relaxation and diffusion measurements can be used as potential biomarkers for noninvasive in vivo monitoring of the myogenic differentiation process from muscle precursor cells to mature skeletal muscle tissue in muscle cell therapy.


Assuntos
Diferenciação Celular , Imageamento por Ressonância Magnética , Músculo Esquelético/citologia , Mioblastos/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Nus
11.
Exp Cell Res ; 320(2): 175-87, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24246223

RESUMO

Chondrocytes rapidly lose their phenotypic expression of collagen II and aggrecan when grown on 2D substrates. It has generally been observed that a fibroblastic morphology with strong actin-myosin contractility inhibits chondrogenesis, whereas chondrogenesis may be promoted by depolymerization of the stress fibers and/or disruption of the physical link between the actin stress fibers and the ECM, as is the case in 3D hydrogels. Here we studied the relationship between the actin-myosin cytoskeleton and expression of chondrogenic markers by culturing fibroblastic chondrocytes in the presence of cytochalasin D and staurosporine. Both drugs induced collagen II re-expression; however, renewed glycosaminoglycan synthesis could only be observed upon treatment with staurosporine. The chondrogenic effect of staurosporine was augmented when blebbistatin, an inhibitor of myosin/actin contractility, was added to the staurosporine-stimulated cultures. Furthermore, in 3D alginate cultures, the amount of staurosporine required to induce chondrogenesis was much lower compared to 2D cultures (0.625 nM vs. 2.5 nM). Using a selection of specific signaling pathway inhibitors, it was found that PI3K-, PKC- and p38-MAPK pathways positively regulated chondrogenesis while the ERK-pathway was found to be a negative regulator in staurosporine-induced re-differentiation, whereas down-regulation of ILK by siRNA indicated that ILK is not determining for chondrocyte re-differentiation. Furthermore, staurosporine analog midostaurin displayed only a limited chondrogenic effect, suggesting that activation/deactivation of a specific set of key signaling molecules can control the expression of the chondrogenic phenotype. This study demonstrates the critical importance of mechanobiological factors in chondrogenesis suggesting that the architecture of the actin cytoskeleton and its contractility control key signaling molecules that determine whether the chondrocyte phenotype will be directed along a fibroblastic or chondrogenic path.


Assuntos
Actinina/metabolismo , Cartilagem/fisiologia , Condrócitos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Miosinas/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Animais , Cartilagem/efeitos dos fármacos , Bovinos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/ultraestrutura , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Fenótipo , Estaurosporina/farmacologia
12.
Sci Technol Adv Mater ; 16(3): 034606, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877793

RESUMO

Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration.

13.
Adv Healthc Mater ; : e2400077, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599586

RESUMO

Following biomaterial implantation, a failure to resolve inflammation during the formation of a fracture hematoma can significantly limit the biomaterial's ability to facilitate bone regeneration. This study aims to combine the immunomodulatory and osteogenic effects of BMP-7 and IL-10 with the regenerative capacity of collagen-hydroxyapatite (CHA) scaffolds to enhance in vitro mineralization in a hematoma-like environment. Incubation of CHA scaffolds with human whole blood leads to rapid adsorption of fibrinogen, significant stiffening of the scaffold, and the formation of a hematoma-like environment characterized by a limited capacity to support the infiltration of human bone progenitor cells, a significant upregulation of inflammatory cytokines and acute phase proteins, and significantly reduced osteoconductivity. CHA scaffolds functionalized with BMP-7 and IL-10 significantly downregulate the production of key inflammatory cytokines, including IL-6, IL-8, and leptin, creating a more permissive environment for mineralization, ultimately enhancing the biomaterial's osteoconductivity. In conclusion, targeting the onset of inflammation in the early phase of bone healing using BMP-7 and IL-10 functionalized CHA scaffolds is a promising approach to effectively downregulate inflammatory processes, while fostering a more permissive environment for bone regeneration.

14.
Adv Healthc Mater ; : e2400810, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857489

RESUMO

Surface design plays a critical role in determining the integration of dental implants with bone tissue. Femtosecond laser-texturing has emerged as a breakthrough technology offering excellent uniformity and reproducibility in implant surface features. However, when compared to state-of-the-art sandblasted and acid-etched surfaces, laser-textured surface designs typically underperform in terms of osseointegration. This study investigated the capacity of a bio-inspired femtosecond laser-textured surface design to enhance osseointegration compared to state-of-the-art sandblasted & acid-etched surfaces. Laser-texturing facilitates the production of an organized trabeculae-like microarchitecture with superimposed nano-scale laser-induced periodic surface structures on both 2D and 3D samples of titanium-zirconium-alloy. Following a boiling treatment to modify the surface chemistry, improving wettability to a contact angle of 10°, laser-textured surfaces enhance fibrin network formation when in contact with human whole blood, comparable to state-of-the-art surfaces. In vitro experiments demonstrate that laser-textured surfaces significantly outperform state-of-the-art surfaces with a 2.5-fold higher level of mineralization by bone progenitor cells after 28 days of culture. Furthermore, in vivo evaluations reveal superior biomechanical integration of laser-textured surfaces after 28 days of implantation. Notably, during abiological pull-out tests, laser-textured surfaces exhibit comparable performance, suggesting that the observed enhanced osseointegration is primarily driven by the biological response to the surface. This article is protected by copyright. All rights reserved.

15.
Nanoscale Adv ; 5(8): 2261-2270, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056625

RESUMO

Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.

16.
Mater Today Bio ; 15: 100303, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35655805

RESUMO

Titanium-based dental implants have been highly optimized to enhance osseointegration, but little attention has been given to the soft tissue-implant interface, despite being a major contributor to long term implant stability. This is strongly linked to a lack of model systems that enable the reliable evaluation of soft tissue-implant interactions. Current in vitro platforms to assess these interactions are very simplistic, thus suffering from limited biological relevance and sensitivity to varying implant surface properties. The aim of this study was to investigate how blood-implant interactions affect downstream responses of different soft tissue cells to implants in vitro, thus taking into account not only the early events of blood coagulation upon implantation, but also the multicellular nature of soft tissue. For this, three surfaces (smooth and hydrophobic; rough and hydrophobic; rough and hydrophilic with nanostructures), which reflect a wide range of implant surface properties, were used to study blood-material interactions as well as cell-material interactions in the presence and absence of blood. Rough surfaces stimulated denser fibrin network formation compared to smooth surfaces and hydrophilicity accelerated the rate of blood coagulation compared to hydrophobic surfaces. In the absence of blood, smooth surfaces supported enhanced attachment of human gingival fibroblasts and keratinocytes, but limited changes in gene expression and cytokine production were observed between surfaces. In the presence of blood, rough surfaces supported enhanced fibroblast attachment and stimulated a stronger anti-inflammatory response from macrophage-like cells than smooth surfaces, but only smooth surfaces were capable of supporting long-term keratinocyte attachment and formation of a layer of epithelial cells. These findings indicate that surface properties not only govern blood-implant interactions, but that this can in turn also significantly modulate subsequent soft tissue cell-implant interactions.

17.
ACS Appl Mater Interfaces ; 14(28): 31751-31766, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786828

RESUMO

Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.


Assuntos
Fibroínas , Seda , Aminoácidos , Proteínas de Artrópodes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fibroínas/química , Proteínas Recombinantes/química , Seda/química
18.
J Biomech Eng ; 133(2): 024502, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280885

RESUMO

The process of bone remodeling is governed by mechanical stresses and strains. Studies on the effects of mechanical stimulation on cell response are often difficult to compare as the nature of the stimuli and differences in parameters applied vary greatly. Experimental systems for the investigation of mechanical stimuli are mostly limited in throughput or flexibility and often the sum of several stimuli is applied. In this work, a flexible system that allows the investigation of cell response to isolated intermittent cyclic hydrostatic pressure (icHP) on a high throughput level is shown. Human bone derived cells were cultivated with or without mechanical stimulus in the presence or absence of chemical cues triggering osteogenesis for 7-10 days. Cell proliferation and osteogenic differentiation were evaluated by cell counting and immunohistochemical staining for bone alkaline phosphatase as well as collagen 1, respectively. In either medium, both cell proliferation and level of differentiation were increased when the cultures were mechanically stimulated. These initial results therefore qualify the present system for studies on the effects of isolated icHP on cell fate and encourage further investigations on the details behind the observed effects.


Assuntos
Osso e Ossos/citologia , Fenômenos Biomecânicos , Osso e Ossos/fisiologia , Contagem de Células , Diferenciação Celular , Células Cultivadas , Humanos , Pressão Hidrostática , Osteogênese , Fatores de Tempo
19.
Colloids Surf B Biointerfaces ; 206: 111940, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34265541

RESUMO

Titanium (Ti)-based implants are broadly applied in the medical field, but their related infections can lead to implant failure. Photo-irradiation of metal materials to generate antimicrobial agents, an alternative to antibiotics, is a promising method to reduce bacterial infection and antibiotic usage. It is therefore important to understand how bacterial pathogens respond to Ti surfaces. Here, Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus, the most prevalent pathogens linked to healthcare-associated infections, were used as model strains. Two different kinds of Ti surfaces respectively stored in dry condition and 0.9 % NaCl solution were applied. Upon UV irradiation and in the absence of bacteria, both tested surfaces exhibited similar bactericidal activity, even though the surfaces stored in 0.9 % NaCl solution generated a slightly higher level of reactive oxygen species (ROS). Interestingly, P. aeruginosa and S. aureus responded to the irradiated Ti surfaces differently regarding interaction time: the number of viable P. aeruginosa was reduced up to 90 % after 30 min interaction with the treated surfaces compared to the untreated ones, but this reduction is lessened to 69 %-81 % after 240 min. By contrast, UV treatment of surfaces did not impact the viability of S. aureus after 30 min interaction, however, led to more than 99 % reduction after 240 min incubation. These results provide first experimental evidence that Gram negative and positive bacterial species respond to ROS with different inactivation kinetics. This work also demonstrated that treatment with photo-irradiation in the absence of bacteria conferred Ti surfaces with efficient bactericidal activity.


Assuntos
Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Bactérias , Pseudomonas aeruginosa , Titânio/farmacologia
20.
ACS Appl Mater Interfaces ; 13(28): 33300-33310, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34254508

RESUMO

Dental implant failure remains a prevalent problem around the globe. The integration of implants at the interface of soft and hard tissues is complex and susceptible to instability and infections. Modifications to the surface of titanium implants have been developed to improve the performance, yet insufficient integration and biofilm formation remain major problems. Introducing nanostructures on the surface to augment the implant-tissue contact holds promise for facilitated implant integration; however, current coating processes are limited in their versatility or costs. We present a highly modular single-step approach to produce multicomponent porous bioactive nanostructured coatings on implants. Inorganic nanoparticle building blocks with complex compositions and architectures are synthesized in situ and deposited on the implants in a single step using scalable liquid-feed flame spray pyrolysis. We present hybrid coatings based on ceria and bioglass, which render the implant surfaces superhydrophilic, promote cell adhesion, and exhibit antimicrobial properties. By modifications to the bioglass/ceria nanohybrid composition and architecture that prevent biomineralization, the coating can instead be tailored toward soft tissue healing. The one-step synthesis of nano-architected tissue-specific coatings has great potential in dental implantology and beyond.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/síntese química , Coagulação Sanguínea/efeitos dos fármacos , Cerâmica/química , Cério/química , Cério/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porosidade , Dióxido de Silício/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA