Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183372

RESUMO

Relationships between crop genetic and functional diversity are key to addressing contemporary agricultural challenges. Yet, there are few approaches for quantifying the relationship between genetic diversity and crop functional trait expression. Here, we introduce 'functional space accumulation curves' to analyze how trait space increases with the number of crop genotypes within a species. We explore the potential for functional space accumulating curves to quantify genotype-trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice (Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ these curves to describe genotype-trait space relationships in the wild annual Arabidopsis thaliana, which has not been subjected to artificial selection. All five species exhibited asymptotic functional space accumulation curves, suggesting a limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented by several genotypes; or functional redundancy that might exist among genotypes. Our findings indicate that there is a diminishing return of functional diversity with increasing number of genotypes. Our analysis demonstrates the efficacy of functional space accumulation curves in quantifying trait space occupancy of crops, with implications for managing crop diversity in agroecosystems, and genetic diversity in crop breeding programs.

2.
New Phytol ; 214(1): 120-131, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27943369

RESUMO

The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (Amax ) and leaf nitrogen (LNarea ) for cultivated and wild species. The relationship between Amax and LNarea was evaluated using a frontier analysis (90th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity.


Assuntos
Agricultura , Nitrogênio/farmacologia , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Carbono/metabolismo , Luz , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Análise de Regressão , Estações do Ano , Madeira/efeitos dos fármacos , Madeira/fisiologia
3.
Sci Rep ; 14(1): 7612, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556523

RESUMO

Europe imports large amounts of soybean that are predominantly used for livestock feed, mainly sourced from Brazil, USA and Argentina. In addition, the demand for GM-free soybean for human consumption is project to increase. Soybean has higher protein quality and digestibility than other legumes, along with high concentrations of isoflavones, phytosterols and minerals that enhance the nutritional value as a human food ingredient. Here, we examine the potential to increase soybean production across Europe for livestock feed and direct human consumption, and review possible effects on the environment and human health. Simulations and field data indicate rainfed soybean yields of 3.1 ± 1.2 t ha-1 from southern UK through to southern Europe (compared to a 3.5 t ha-1 average from North America). Drought-prone southern regions and cooler northern regions require breeding to incorporate stress-tolerance traits. Literature synthesized in this work evidenced soybean properties important to human nutrition, health, and traits related to food processing compared to alternative protein sources. While acknowledging the uncertainties inherent in any modelling exercise, our findings suggest that further integrating soybean into European agriculture could reduce GHG emissions by 37-291 Mt CO2e year-1 and fertiliser N use by 0.6-1.2 Mt year-1, concurrently improving human health and nutrition.


Assuntos
Fabaceae , Glycine max , Humanos , Melhoramento Vegetal , Agricultura , Europa (Continente)
4.
Funct Plant Biol ; 43(9): 862-869, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480510

RESUMO

Soybean has a narrow genetic base thought to limit future yield genetic gains. However, there is no evidence whether this reduction in genetic diversity correlates with diversity loss for any yield trait. We tested how photosynthetic nitrogen use efficiency (leaf photosynthesis per unit nitrogen, NUEp) evolved from the wild relative Glycine soja Siebold & Zucc. to the current Glycine max (L.) Merr. Five populations resulting from different evolutionary bottlenecks were evaluated under field conditions. Populations were wild ancestors, domesticated Asian landraces, North American ancestors, and modern cultivars. Genotypic differences in photosynthesis and leaf nitrogen were evident, creating a significant 3-fold variation in phenotypic NUEp. There was a parallel reduction in molecular marker and phenotypic NUEp diversity after each evolutionary bottleneck. G. soja had three times more NUEp diversity and 25% more average NUEp compared with the elite modern cultivars. Two strategies for increasing NUEp were identified: (i) increases in light saturated photosynthesis (Pmax), and, alternatively, (ii) reductions in leaf nitrogen. A modelling approach showed that NUEp will increase yield only if based on increased Pmax. Our study quantified the genetic potential of exotic germplasm available for trait-directed breeding. Results antagonise the concept that elite germplasm is always superior for any relevant yield trait when compared with undomesticated germplasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA