Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J AOAC Int ; 97(2): 334-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830144

RESUMO

The performance characteristics of AOAC Official Method 2011.02 (the PCOX method) as a replacement for the AOAC mouse bioassay procedure have been well defined by validation studies, but these data do not communicate the complete story. The context provided by analyzing 9000 regulatory monitoring samples over 3 years demonstrates not only the reduction in animal use but also the increase in food safety that has been realized using a chemistry-based method. Detection of lower toxin levels provided early warning to enable directed sampling as toxin levels increased. The toxin profile information generated by a chemistry-based method was used to detect potential interferences qualitatively and can be used to assess the impact of changes recommended to monitoring programs. Such changes might include which toxins should be included in an action limit or the toxic equivalence factors used for these toxins.


Assuntos
Alternativas aos Testes com Animais/métodos , Toxinas Marinhas/química , Frutos do Mar/análise , Animais , Bioensaio , Canadá , Análise de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Humanos , Camundongos , Fatores de Tempo
2.
J AOAC Int ; 97(2): 380-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830149

RESUMO

An interlaboratory ring trial was designed and conducted by the Centre for Environment, Fisheries, and Aquaculture Science to investigate a range of issues affecting the analysis of a candidate Pacific oyster paralytic shellfish toxin reference material. A total of 21 laboratories participated in the study and supplied results using one or more of three instrumental methods, specifically precolumn oxidation (Pre-COX) LC with fluorescence detection (FLD; AOAC Official Method 2005.06), postcolumn oxidation (PCOX) LC-FLD (AOAC Official Method 2011.02), and hydrophilic interaction LC/MS/MS. Each participant analyzed nine replicate samples of the oyster tissue in three separate batches of three samples over a period of time longer than 1 week. Results were reported in a standardized format, reporting both individual toxin concentrations and total sample toxicity. Data were assessed to determine the equivalency of the two AOAC LC methods and the LC/MS/MS method as well as an assessment of intrabatch and interbatch repeatability and interlaboratory reproducibility of each method. Differences among the results reported using the three methods were shown to be statistically significant, although visual comparisons showed an overlap between results generated by the majority of tests, the exception being the Pre-COX quantitation of N-hydroxylated toxins in post ion-exchange fractions. Intralaboratory repeatability and interlaboratory reproducibility were acceptable for most of the results, with the exception of results generated from fractions. The results provided good evidence for the acceptable performance of the PCOX method for the quantitation of C toxins. Overall the study showed the usefulness of interlaboratory analysis for the characterization of paralytic shellfish poisoning matrix reference materials, highlighting some issues that may need to be addressed with further method assessment at individual participant laboratories.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Toxinas Marinhas/química , Ostreidae/química , Intoxicação por Frutos do Mar/prevenção & controle , Animais , Fluorescência , Análise de Alimentos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
3.
J AOAC Int ; 94(4): 1154-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21919349

RESUMO

Sixteen laboratories participated in a collaborative study to evaluate method performance parameters of a liquid chromatographic method of analysis for paralytic shellfish toxins (PST) in blue mussels (Mytilus edulis), soft shell clams (Mya arenaria), sea scallops (Placopectin magellanicus), and American oysters (Crassostrea virginicus). The specific analogs tested included saxitoxin, neosaxitoxin, gonyautoxins-1 to -5, decarbamoyl-gonyautoxins-2 and -3, decarbamoyl-saxitoxin, and N-sulfocarbamoyl-gonyautoxin-2 and -3. This instrumental technique has been developed as a replacement for the current AOAC biological method (AOAC Official Method 959.08) and an alternative to the pre-column oxidation LC method (AOAC Official Method 2005.06). The method is based on reversed-phase liquid chromatography with post-column oxidation and fluorescence detection (excitation 330 nm and emission 390 nm). The shellfish samples used in the study were prepared from the edible tissues of clams, mussels, oysters, and scallops to contain concentrations of PST representative of low, medium, and high toxicities and with varying profiles of individual toxins. These concentrations are approximately equivalent to 1/2 maximum level (ML), ML, or 2xML established by regulatory authorities (0.40, 0.80, and 1.60 mg STX diHCl eq/kg, respectively). Recovery for the individual toxins ranged from 104 to 127%, and recovery of total toxin averaged 116%. Horwitz Ratio (HorRat) values for individual toxins in the materials included in the study were generally within the desired range of 0.3 to 2.0. For the estimation of total toxicity in the test materials, the reproducibility relative standard deviation ranged from 4.6 to 20%. A bridging study comparing the results from the study participants using the post-column oxidation (PCOX) method with the results obtained in the study director's laboratory on the same test materials using the accepted reference method, the mouse bioassay (MBA; AOAC Official Method 959.08), showed that the average ratio of results obtained from the two methods was 1.0. A good match of values was also achieved with a new certified reference material. The results from this study demonstrated that the PCOX method is a suitable method of analysis for PST in shellfish tissue and provides both an estimate of total toxicity, equivalent to that determined using the MBAAOAC Official Method 959.08, and a detailed profile of the individual toxin present in the sample.


Assuntos
Bivalves/química , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Toxinas Marinhas/isolamento & purificação , Animais , Camundongos , Oxirredução , Intoxicação por Frutos do Mar/prevenção & controle
4.
Toxins (Basel) ; 13(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671640

RESUMO

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


Assuntos
Monitoramento Biológico , Toxinas Marinhas/metabolismo , Moluscos/metabolismo , Espécies Sentinelas/metabolismo , Intoxicação por Frutos do Mar , Frutos do Mar/análise , Animais , Oceano Atlântico , Biotransformação , Avaliação de Programas e Projetos de Saúde , Reprodutibilidade dos Testes , Especificidade da Espécie , Fatores de Tempo
5.
Harmful Algae ; 102: 101852, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875179

RESUMO

Spatial and temporal trends of marine harmful algal events in Canada over the last three decades were examined using data from the Harmful Algal Event Database (HAEDAT). This database contains the most complete record of algal blooms, phycotoxins and shellfish harvesting area closures in Canada since 1987. This 30-year review of 593 Canadian HAEDAT records from 1988 to 2017, together with other Canadian data and publications, shows that recurring harmful algal events have been widespread throughout both the Atlantic and Pacific coastal regions. The 367 paralytic shellfish toxin (PST) reports revealed annual and frequent recurrence throughout both the Atlantic and Pacific regions, including multi-year PST events in the Bay of Fundy, the Estuary and Gulf of St. Lawrence and the Strait of Georgia. The 70 amnesic shellfish toxin (AST) records revealed no recognizable trend, as these events were usually area specific and did not recur annually. The increasing frequency of diarrhetic shellfish toxin (DST) events over the period of this review, in total 59 records, can be at least partially explained by increased sampling effort. Marine species mortalities caused by harmful algae (including diatoms, dictyochophytes, dinoflagellates, and raphidophytes), were a common occurrence in the Pacific region (87 reports), but have been reported much less frequently in the Atlantic region (10 reports). Notable Canadian records contained in HAEDAT include the first detection worldwide of amnesic shellfish poisoning (ASP), attributed to the production of domoic acid (an AST) by a diatom (Pseudo-nitzschia multiseries) in Prince Edward Island in 1987. The first proven case of diarrhetic shellfish poisoning (DSP) in Canada and North America was recorded in 1990, and the first closures of shellfish harvesting due to DST (associated with the presence of Dinophysis norvegica) occurred in Nova Scotia in 1992, followed by closures in Newfoundland and Labrador in 1993. In 2008, mass mortalities of fishes, birds and mammals in the St. Lawrence Estuary were caused by Alexandrium catenella and high levels of PST. During 2015, the Pacific coast experienced a large algal bloom that extended from California to Alaska. It resulted in the closure of several shellfish harvesting areas in British Columbia due to AST, produced by Pseudo-nitzschia australis. Data from the Canadian Arctic coast is not included in HAEDAT. However, because of the emerging importance of climate change and increased vessel traffic in the Arctic, information on the occurrence of harmful algal species (pelagic and sympagic = sea ice-associated) in that region was compiled from relevant literature and data. The results suggest that these taxa may be more widespread than previously thought in the Canadian Arctic. Information in HAEDAT was not always robust or complete enough to provide conclusions about temporal trends. Compilation of spatial and temporal information from HAEDAT and other records is nevertheless important for evaluating the potential role of harmful algae as a stressor on Canadian marine ecosystems, and will support the next step: developing a knowledge gap analysis that will establish research priorities for determining their consequences on human and ecosystem health.


Assuntos
Ecossistema , Fitoplâncton , Alaska , Regiões Árticas , Colúmbia Britânica , Humanos , América do Norte , Nova Escócia
6.
J AOAC Int ; 92(6): 1690-704, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20166587

RESUMO

A single-laboratory validation study was conducted for the LC post-column oxidation analysis of paralytic shellfish toxins (PST): saxitoxin (STX); neosaxitoxin (NEO); gonyautoxins (GTX) 1-5; decarbamoyl gonyautoxins (dcGTX) 2 and 3; decarbamoyl saxitoxin (dcSTX); and N-sulfocarbamoyl-gonyautoxin-2 and 3 (C1 and C2) in mussels (Mytilus edulis), soft shell clams (Mya arenaria), scallops (Placopectin magellanicus), and oysters (Crassostrea virginicus). The instrumental technique was developed for the analysis of PST in shellfish as an alternative to the precolumn oxidation method, AOAC Official Method 2005.06, and a replacement for the current AOAC biological method 959.08. The method used reversed-phase LC with post-column oxidation and fluorescence detection. Test materials for method recovery were prepared by fortification of blank material with a cocktail of PST. Materials used to determine method repeatability and intermediate precision were prepared by blending blank material with naturally incurred material. The target total toxicity levels evaluated in the study were 0.40, 0.80, and 1.60 mg STX x diHCl equivalents per kilogram [(eq/kg) 1%, 1, and 2 times the regulatory limit]. Linearity, recovery, and within-laboratory precision parameters of the method were evaluated. Correlation coefficients of the calibration curves for all toxins studied were > 0.99. Total toxin recovery ranged from 94 to 106% at the three levels of interest. Repeatability and intermediate precision RSD ranged from 2 to 7% and 2 to 8%, respectively. The method LOD and LOQ (assuming the presence of all toxins) were determined to be equivalent to 0.18 and 0.39 mg STX x diHCl eq/kg. The method is intended for a regulatory framework and will be submitted for an AOAC collaborative study.


Assuntos
Toxinas Marinhas/análise , Frutos do Mar/análise , Animais , Bivalves , Calibragem , Cromatografia Líquida de Alta Pressão , Toxinas Marinhas/toxicidade , Ostreidae , Oxirredução , Paralisia/induzido quimicamente , Pectinidae , Padrões de Referência , Reprodutibilidade dos Testes , Soluções , Espectrometria de Fluorescência
7.
J AOAC Int ; 91(3): 589-97, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18567305

RESUMO

A rapid liquid chromatographic (LC) method with postcolumn oxidation and fluorescence detection (excitation 330 nm, emission 390 nm) for the determination of paralytic shellfish toxins (PSTs) in shellfish tissue has been developed. Extracts prepared for mouse bioassay (MBA) were treated with trichloroacetic acid to precipitate protein, centrifuged, and pH-adjusted for LC analysis. Saxitoxin (STX), neoSTX (NEO), decarbamoylSTX (dcSTX), and the gonyautoxins, GTX1, GTX2, GTX3, GTX4, GTX5, dcGTX2, and dcGTX3, were separated on a polar-linked alkyl reversed-phase column using a step gradient elution; the N-sulfocarbamoyl GTXs, C1, C2, C3, and C4, were determined on a C-8 reversed-phase column in the isocratic mode. Relative toxicities were used to determine STX-dihydrochloride salt (diHCl) equivalents (STXeq). Calibration graphs were linear for all toxins studied with STX showing a correlation coefficient of 0.999 and linearity between 0.18 and 5.9 ng STX-diHCI injected (equivalent to 3.9-128 microg STXeq/100 g in tissue). Detection limits for individual toxins ranged from 0.07 microg STXeq/100 g for C1 and C3 to 4.1 microg STXeq/100 g for GTX1. Spike recoveries ranged from 76 to 112% in mussel tissue. The relative standard deviation (RSD) of repeated injections of GTX and STX working standard solutions was < 4%. Uncertainty of measurement at a level of 195 microg STXeq/100 g was 9%, and within-laboratory reproducibility expressed as RSD was 4.6% using the same material. Repeatability of a 65 microg STXeq/100 g sample was 3.0% RSD. Seventy-three samples were analyzed by the new postcolumn method and both AOAC Official Methods for PST determination: the MBA (y = 1.22x + 13.99, r2 = 0.86) and the precolumn LC oxidation method of Lawrence (y = 2.06x + 12.21, r2 = 0.82).


Assuntos
Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Toxinas Marinhas/análise , Frutos do Mar/análise , Frutos do Mar/toxicidade , Animais , Cromatografia Líquida/normas , Cromatografia Líquida/estatística & dados numéricos , Humanos , Toxinas Marinhas/normas , Toxinas Marinhas/toxicidade , Padrões de Referência , Reprodutibilidade dos Testes , Saxitoxina/análogos & derivados , Saxitoxina/análise , Saxitoxina/normas
8.
J Agric Food Chem ; 60(6): 1437-46, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22239716

RESUMO

Pinnatoxins are a group of fast-acting cyclic imine toxins previously identified in shellfish from Asia, the southern Pacific, and northern Europe. In this work pinnatoxins were detected in mussels from locations across the eastern coast of Canada. Pinnatoxin G (6) was the major structural variant present, sometimes at levels >80 µg/kg, whereas much lower levels of pinnatoxin A (1) were detected in some samples. Increased concentrations were observed following base hydrolysis of extracts, leading to the discovery by LC-MS of a range of fatty acid esters of 6. Information on the structures of these acylated derivatives was provided through a series of mass spectrometric experiments, supported by partial synthesis, and it is proposed that the compounds are 28-O-acyl esters of 6. Although acyl esters of a range of other phycotoxins are known to form as metabolites in shellfish, this is the first report of their existence for this particular toxin class. The occurrence of pinnatoxins in North American shellfish further highlights the international distribution of these toxins.


Assuntos
Alcaloides/análise , Bivalves/química , Ácidos Graxos/análise , Frutos do Mar/análise , Compostos de Espiro/análise , Alcaloides/metabolismo , Animais , Esterificação , Nova Escócia , Compostos de Espiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA