Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 670-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413809

RESUMO

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm-2 (~500 F cm-3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm-3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm-2 (3,200 F cm-3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

2.
J Cell Sci ; 135(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35319066

RESUMO

Natural or synthetic naphthoquinones have been identified to interfere with biological systems and, in particular, exhibit anticancer properties. As redox cyclers, they generate reactive oxygen species in cells and, as electrophiles, they react with nucleophiles, mainly thiols, and form covalent adducts. To further decipher the molecular mechanism of action of naphthoquinones in human cells, we analyzed their effects in HeLa cells. First, we demonstrated that the naphthoquinones menadione and plumbagin inhibited the nucleolar NAD+-dependent deacetylase Sirtuin 7 in vitro. As assessed by their inhibition of rDNA transcription, pre-rRNA processing and formation of etoposide-induced 53BP1 foci, menadione and plumbagin also inhibited Sirtuin 7 catalytic activity in vivo. Second, we established that when sulfhydryl arylation by menadione or plumbagin was prevented by the thiol reducing agent N-acetyl-L-cysteine, the inhibition of Sirtuin 7 catalytic activity was also blocked. Finally, we discuss how inhibition of Sirtuin 7 might be crucial in defining menadione or plumbagin as anti-tumor agents that can be used in combination with other anti-tumor strategies.


Assuntos
Naftoquinonas , Sirtuínas/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio , Vitamina K 3/farmacologia
3.
Small ; : e2402607, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860732

RESUMO

The demand for high-performance energy storage devices to power Internet of Things applications has driven intensive research on micro-supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process. Using a combination of advanced techniques, the relationships among the morphology, structure, and electrochemical properties of the RuN films are investigated. The films are shown to have a complex structure containing a mixture of crystallized Ru and RuN phases with an amorphous oxide layer. The combination of high electrical conductivity and pseudocapacitive charge storage properties enabled a 16 µm-thick RuN film to achieve a capacitance value of 0.8 F cm-2 in 1 m KOH with ultra-high rate capability.

4.
Inorg Chem ; 63(5): 2327-2339, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270093

RESUMO

As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.

5.
J Biol Inorg Chem ; 28(6): 549-558, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462740

RESUMO

A series of new ferrocenyl nitroheterocyclic sulfonylhydrazones (1a-4a and 1b-2b) were prepared by the reaction between formyl (R = H) or acetyl (R = CH3) nitroheterocyclic precursors [4/5-NO2(C5H2XCOR), where X = O, S)] and ferrocenyl tosyl hydrazine [(η5-C5H5)Fe(η5-C5H4SO2-NH-NH2)]. All compounds were characterized by conventional spectroscopic techniques. In the solid state, the molecular structures of compounds 1a, 2b, and 3a were determined by single-crystal X-ray diffraction. The compounds showed an E-configuration around the C=N moiety. Evaluation of trypanocidal activity, measured in vitro against the Trypanosoma cruzi and Trypanosoma brucei strains, indicated that all organometallic tosyl hydrazones displayed activity against both parasite species with a higher level of potency toward T. brucei than T. cruzi. Moreover, the biological evaluation showed that the 5-nitroheterocyclic derivatives were more efficient trypanocidal agents than their 4-nitroheterocyclic counterparts.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Metalocenos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia
6.
Inorg Chem ; 62(46): 18970-18981, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37932963

RESUMO

The new thioapatite Ba5(VO4-αSα)3X (X = F, Cl, I) series of compounds was prepared and characterized. Compared to known apatite phases built from unconnected vanadate VO4 groups separated by Ba2+ cations delimiting halide-filled channels, their crystal structure is built from mixed anion thiovanadate VO4-αSα, where V5+ is surrounded by both O and S, therefore exhibiting a triple anion lattice. Here, the strategy consisting in incorporating a chalcogenide anion aims at raising the valence band to bring the band gap to the visible range in order to reach photoactive materials under visible light. Both the halide anion nature and the S/O ratio impact the materials' photoconductivity. While the photocurrent response is comparable to that found in the recently investigated apatite phase Pb5(VO4)3I, a short carrier lifetime is detected as well as a shift of the activity toward the visible light. This apatite series combining thiovanadate and halide-filled channels opens new perspectives in the extended field of apatites and their applications.

7.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139224

RESUMO

Historically, natural products have played a major role in the development of antibiotics. Their complex chemical structures and high polarity give them advantages in the drug discovery process. In the broad range of natural products, sesquiterpene lactones are interesting compounds because of their diverse biological activities, their high-polarity, and sp3-carbon-rich chemical structures. Parthenolide (PTL) is a natural compound isolated from Tanacetum parthenium, of the family of germacranolide-type sesquiterpene lactones. In recent years, parthenolide has been studied for its anti-inflammatory, antimigraine, and anticancer properties. Recently, PTL has shown antibacterial activities, especially against Gram-positive bacteria. However, few studies are available on the potential antitubercular activities of parthenolide and its analogs. It has been demonstrated that parthenolide's biological effects are linked to the reactivity of α-exo-methylene-γ-butyrolactone, which reacts with cysteine in targeted proteins via a Michael addition. In this work, we describe the ene reaction of acylnitroso intermediates with parthenolide leading to the regioselective and stereoselective synthesis of new derivatives and their biological evaluation. The addition of hydroxycarbamates and hydroxyureas led to original analogs with higher polarity and solubility than parthenolide. Through this synthetic route, the Michael acceptor motif was preserved and is thus believed to be involved in the selective activity against Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Sesquiterpenos , Mycobacterium tuberculosis/metabolismo , Sesquiterpenos/química , Anti-Inflamatórios , Lactonas/química
8.
Small ; 18(14): e2107054, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174974

RESUMO

Miniaturized electronics suffer from a lack of energy autonomy. In that context, the fabrication of lithium-ion solid-state microbatteries with high performance is mandatory for powering the next generation of portable electronic devices. Here, the fabrication of a thin film positive electrode for 3D Li-ion microbatteries made by the atomic layer deposition (ALD) method and in situ lithiation step is demonstrated. The 3D electrodes based on spinel LiMn2 O4 films operate at high working potential (4.1 V vs Li/Li+ ) and are capable of delivering a remarkable surface capacity (≈180 µAh cm-2 ) at low C-rate while maintaining more than 40 µAh cm-2 at C/2 (time constant = 2 h). Both the thickness of the electrode material and the 3D gain of the template are carefully tuned to maximize the electrode performance. Advanced characterization techniques such as transmission electron and X-ray transmission microscopies are proposed as perfect tools to study the conformality of the deposited films and the interfaces between each layer: no interdiffusion or segregation are observed. This work represents a major issue towards the fabrication of 3D-lithiated electrode by ALD-without any prelithiation step by electrochemical technique-making it an attractive solution for the fabrication of 3D Li-ion solid-state microbatteries with semiconductor processing methods.

9.
J Am Chem Soc ; 143(50): 21206-21210, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878779

RESUMO

The chain shuttling ring-opening copolymerization of l-lactide with ε-caprolactone has been achieved using two aluminum catalysts presenting different selectivities and benzyl alcohol as chain transfer agent. A newly synthesized aminobisphenolate supported aluminum complex affords the synthesis of lactone rich poly(l-lactide-co-lactone) statistical copolymeric blocks, while Al(OiPr)3 produces semicrystalline poly(l-lactide) rich blocks. Transalkoxylation is shown to operate efficiently. The crystalline ratios and glass transition temperatures of these new classes of polylactide based block copolymers can be tuned by adjusting the catalysts and the comonomers ratio.

10.
J Cell Sci ; 132(17)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31331964

RESUMO

In humans, ribosome biogenesis mainly occurs in nucleoli following two alternative pre-rRNA processing pathways differing in the order in which cleavages take place but not by the sites of cleavage. To uncover the role of the nucleolar NAD+-dependent deacetylase sirtuin 7 in the synthesis of ribosomal subunits, pre-rRNA processing was analyzed after sirtinol-mediated inhibition of sirtuin 7 activity or depletion of sirtuin 7 protein. We thus reveal that sirtuin 7 activity is a critical regulator of processing of 45S, 32S and 30S pre-rRNAs. Sirtuin 7 protein is primarily essential to 45S pre-rRNA cleavage at site 2, which is the first step of processing pathway 2. Furthermore, we demonstrate that sirtuin 7 physically interacts with Nop56 and the GAR domain of fibrillarin, and propose that this could interfere with fibrillarin-dependent cleavage. Sirtuin 7 depletion results in the accumulation of 5' extended forms of 32S pre-rRNA, and also influences the localization of fibrillarin. Thus, we establish a close relationship between sirtuin 7 and fibrillarin, which might determine the processing pathway used for ribosome biogenesis.


Assuntos
RNA Ribossômico/metabolismo , Sirtuínas/metabolismo , Benzamidas/farmacologia , Domínio Catalítico , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/metabolismo , Células HEK293 , Células HeLa , Humanos , Naftóis/farmacologia , Proteínas Nucleares/metabolismo , Biogênese de Organelas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ribossomos/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética
11.
Inorg Chem ; 59(9): 5907-5917, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32319754

RESUMO

Mixed-anion compounds are among the most promising systems to design functional materials with enhanced properties. In particular, heteroleptic environments around transition metals allow tuning of the polarity or band-gap engineering for instance. We present the original oxysulfide Ba5(VO2S2)2(S2)2, the fifth member in the quaternary system Ba-V-S-O. It exhibits the mixed-anion building units V5+O2S2 and isolated disulfide pairs (S2)2-. The structure is solved by combining single-crystal and powder X-ray diffraction and transmission electron microscopy. First-principles calculations were combined in order to highlight the anion roles. In particular, our density functional theory study shows that the 3p states of the disulfide pairs dictate the band gap. In this study, we point out anionic tools for band-gap engineering that can be useful for the design of phases for numerous applications. Finally, third harmonic generation (THG) was measured and compared to the large THG observed for Cu2O, which reveals the potential for nonlinear-optical properties that should be further investigated.

12.
Inorg Chem ; 59(9): 5929-5938, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285666

RESUMO

Two polytypes of the new oxyvanadate matrix La7O6(VO4)3 were identified and deeply characterized. The crystal structure of the α-polytype was solved using a combination of precession electron diffraction and powder X-ray diffraction (XRD) techniques. It crystallizes in a monoclinic unit cell with space group P21, a = 13.0148(3) Å, b = 19.1566(5) Å, c = 7.0764(17) Å, and ß = 99.87(1)°. Its structure is built upon [La7O6]9+ polycationic units at the origin of a porous 3D network, evidencing rectangular channels filled by isolated VO4 tetrahedra. An in situ high-temperature XRD study highlights a number of complex phase transitions assorted with the existence of a ß-polytype also refined in a monoclinic unit cell, space group P21/n, a = 13.0713(4) Å, b = 18.1835(6) Å, c = 7.1382(2) Å, and ß = 97.31(1)°. Thus, during the transitions, while the polycationic networks are almost identical, the vanadate's geometry is largely modified. The use of Eu3+ and Sm3+ at different concentrations in the host lattice is possible using solid-state techniques. The photoluminescence (PL), PL excitation (PLE) spectra, and luminescence decay times were recorded and discussed. The phosphors present an emission light, being bright and reddish orange after excitation under UV. This is mainly due to the V-O band and f-f transitions. Whatever the studied polytype, the final luminescence properties are retained during the heating/cooling process.

13.
Inorg Chem ; 58(2): 1267-1277, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30620569

RESUMO

This paper reports the synthesis and characterization of four new compounds based on thorium and tetraethyldiglycolamide (TEDGA), [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O (1), [Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O (2), [Th(TEDGA)4][NO3]4.4H2O (3), and [Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O (4). All of them are obtained by successive crystallization from a unique medium containing thorium nitrate and TEDGA, in the presence of oxalic acid. Compound (1) ( a = b = 18.7140(12) Å, c = 12.9212(9) Å, S.G. P42212) crystallized at first from a gel obtained by slow evaporation of the medium. When compound (1) is left in gel for a period of some weeks, it tends to disappear and to be replaced by crystals of (2) ( a = 12.246(2) Å, b = 32.253(5) Å, c = 12.256(2) Å, ß = 106.741(12)°, S.G. P21/ n) and (3) ( a = 26.5966(13) Å, b = 15.4489(7) Å, c = 18.5582(9) Å, ß = 116.528(1)°, S.G. C2/ c). In their turn, solids (2) and (3) disappear from the gel left for some months, and compound (1) crystallizes in mixture with compound (4) ( a = 15.6611(7) Å, b = 17.9082(9) Å, c = 18.1814(7) Å, α = 89.896(2)°, ß = 65.549(2)°, γ = 87.623(2), S.G. P-1). Solving the crystal structure by single crystal diffraction reveals that TEDGA is always coordinated to thorium through its three oxygen atoms. In the mixed-ligands compounds (1), (2), and (4), Th4+ is surrounded by two oxalate ligands and two TEDGA, leading to a 10-fold coordination. The dimensionality of the networks changes from linear chains (1D) (1) to isolated entities (0D) (2) or dimeric units (0D) (4). Compound (3) is formed by the assembly of 12-fold coordinated monomeric entities (0D) in which the thorium cation is surrounded by four TEDGA. This compound is the first example of such a coordination number without nitrate anion included in the coordination sphere of Th.

14.
J Cell Sci ; 129(8): 1592-604, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929073

RESUMO

Ribosome biogenesis is a fundamental multistep process initiated by the synthesis of 90S pre-ribosomal particles in the nucleoli of higher eukaryotes. Even though synthesis of ribosomes stops during mitosis while nucleoli disappear, mitotic pre-ribosomal particles persist as observed in pre-nucleolar bodies (PNBs) during telophase. To further understand the relationship between the nucleolus and the PNBs, the presence and the fate of the mitotic pre-ribosomal particles during cell division were investigated. We demonstrate that the recently synthesized 45S precursor ribosomal RNAs (pre-rRNAs) as well as the 32S and 30S pre-rRNAs are maintained during mitosis and associated with the chromosome periphery together with pre-rRNA processing factors. Maturation of the mitotic pre-ribosomal particles, as assessed by the stability of the mitotic pre-rRNAs, is transiently arrested during mitosis by a cyclin-dependent kinase (CDK)1-cyclin-B-dependent mechanism and can be restored by CDK inhibitor treatments. At the M-G1 transition, the resumption of mitotic pre-rRNA processing in PNBs does not induce the disappearance of PNBs; this only occurs when functional nucleoli reform. Strikingly, during their maturation process, mitotic pre-rRNAs localize in reforming nucleoli.


Assuntos
Proteína Quinase CDC2/metabolismo , Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Células HeLa , Humanos , Mitose , Processamento Pós-Transcricional do RNA
15.
Chemistry ; 23(45): 10777-10788, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488394

RESUMO

In the present study, we report the first silver-dependent enantiodivergent gold-catalysed reaction. The asymmetric intramolecular hydroamination of alkenes catalysed by the combination of a single chiral binuclear gold(I) chloride complex and silver perchlorate can afford both enantiomers of the products by a simple solvent change from toluene to methanol. Such an enantiodivergent reaction is strictly independent of the reaction temperature or of the nature of the catalyst anion and displays the same first-order kinetic rate law with respect to substrate concentration in both solvents. Beyond a simple solvent effect the enantioinversion is controlled by gold-silver chloride adducts which occur only in methanol and allow a dual activation of the reagent. While one single gold atom activates the alkene moiety, the other gold atom forms an oxophilic gold-silver chloride adduct which is likely to interact with the carbamate function. By comparison with toluene, which affords (S)-enantiomer, this proximal and bimetallic activation would allow an opposite stereodifferentiation of the two diastereomeric intermediates during the final protodeauration step and lead therefore to the (R)-enantiomer.

16.
Inorg Chem ; 56(14): 8547-8553, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28665129

RESUMO

Topochemical modification methods for solids have shown great potential in generating metastable structures inaccessible through classical synthetic routes. Here, we present the enhanced topotactic reduction of the multiferroic compound YMnO3. At moderate temperature in ammonia flow, the most reduced YMnO3-δ (δ = 0.5) phase could be stabilized. XRD, PND, and HREM results show that phase separation occurs into two intimately intergrown layered sublattices with nominal compositions ∞[YMn2+O2+x](1-2x)+ and ∞[YMn2+O3-x](1-2x)- containing versatile Mn2+ coordinations. The former sublattice shows original AA stacking between Mn layers, while AB stacking in the latter results from oxygen removal from the parent YMnO3 crystal structure.

17.
Inorg Chem ; 55(5): 2252-60, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26901292

RESUMO

A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and ß = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

18.
Inorg Chem ; 55(20): 10438-10444, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27686632

RESUMO

U3O8 is considered to be the most stable phase for uranium oxide. Its structural properties must be accurately understood to foresee and manage aspects such as its leaching behavior when spent nuclear fuel is stored in an oxidative environment. Moreover, as fuel irradiation causes the formation of fission products and activation products such as plutonium and minor actinides, it is probable that U3O8 will be mixed with other chemical elements under real conditions of oxidation. The storage issue can be extended to americium transmutation, where the irradiated compounds are mixed oxides composed of uranium and americium. This study thus focused on determining the structural properties of a solid solution containing uranium and trivalent americium (U/Am ratio = 90/10) and synthesized so as to obtain conventional U3O8 oxide. This paper presents the possibility of combining trivalent americium with uranium in a U3O8 mixed oxide for the first time, despite the high valence and atomic ratio differences, and proposes novel structural arrangements. X-ray diffraction measurements reveal americium substitution in U3O8 uranium cationic sites, leading to phase transformation into a U3O8 high-temperature structure and general lattice swelling. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure experiments highlight an excess of U+VI organized in uranyl units as the main consequence of accommodation.

19.
Org Biomol Chem ; 13(4): 1106-12, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25417857

RESUMO

A series of phosphinic glutamate derivatives (e.g.LSP1-2111) have been proven to be potent agonists of metabotropic glutamate (mGlu) receptors and shown promising in vivo activity. However, so far all were synthesized and tested as a mixture of two diastereomers whose absolute and relative configurations are not known. In this study, the stereomers were separated on a Crownpack CR(+) column and their absolute configuration was assessed by means of a diastereoselective synthesis. Both separated L-stereomers activated the mGlu4 receptor with EC50's of 0.72 and 4.4 µM for (1S,1'S)-and (1S,1'R)-LSP1-2111, respectively.


Assuntos
Ácido Glutâmico/química , Compostos Organofosforados/química , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Conformação Molecular , Receptores de Glutamato Metabotrópico/agonistas
20.
J Am Chem Soc ; 135(42): 15678-81, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24117158

RESUMO

By controlling the water content, a new poly-oxo-metalate species containing 38 uranium centers has been solvothermally synthesized in the presence of benzoic acid in tetrahydrofuran (THF). The {U38} motif contains a distorted UO2 core of fluorite type, stabilized by benzoate and THF molecules. This compound is analogous to the {Pu38} motif and was characterized by X-ray photoelectron spectroscopy and magnetic analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA