Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 17(6): 1069-1077, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35296950

RESUMO

PURPOSE: Complications related to vascular damage such as intra-operative bleeding may be avoided during neurosurgical procedures such as petroclival meningioma surgery. To address this and improve the patient's safety, we designed a real-time blood vessel avoidance strategy that enables operation on deformable tissue during petroclival meningioma surgery using Micron, a handheld surgical robotic tool. METHODS: We integrated real-time intra-operative blood vessel segmentation of brain vasculature using deep learning, with a 3D reconstruction algorithm to obtain the vessel point cloud in real time. We then implemented a virtual-fixture-based strategy that prevented Micron's tooltip from entering a forbidden region around the vessel, thus avoiding damage to it. RESULTS: We achieved a median Dice similarity coefficient of 0.97, 0.86, 0.87 and 0.77 on datasets of phantom blood vessels, petrosal vein, internal carotid artery and superficial vessels, respectively. We conducted trials with deformable clay vessel phantoms, keeping the forbidden region 400 [Formula: see text]m outside and 400 [Formula: see text]m inside the vessel. Micron's tip entered the forbidden region with a median penetration of just 8.84 [Formula: see text]m and 9.63 [Formula: see text]m, compared to 148.74 [Formula: see text]m and 117.17 [Formula: see text]m without our strategy, for the former and latter trials, respectively. CONCLUSION: Real-time control of Micron was achieved at 33.3 fps. We achieved improvements in real-time segmentation of brain vasculature from intra-operative images and showed that our approach works even on non-stationary vessel phantoms. The results suggest that by enabling precise, real-time control, we are one step closer to using Micron in real neurosurgical procedures.


Assuntos
Neoplasias Meníngeas , Meningioma , Algoritmos , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Procedimentos Neurocirúrgicos , Imagens de Fantasmas
2.
J Med Device ; 15(3): 031014, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34557261

RESUMO

Retinal membrane peeling requires delicate manipulation. The presence of the surgeon's physiological tremor, the high variability and often low quality of the ophthalmic image, and excessive forces make the tasks more challenging. Preventing unintended movement caused by tremor and unintentional forces can reduce membrane injury. With the use of an actively stabilized handheld robot, we employ a monocular camera-based surface reconstruction method to estimate the retinal plane and we propose the use of a virtual fixture with the application of a hard stop and motion scaling to improve control of the tool tip during delaminating in a laboratory simulation of retinal membrane peeling. A hard stop helps to limit downward force exerted on the surface. Motion scaling also improves the user's control of contact force when delaminating. We demonstrate a reduction of maximum force and maximum surface-penetration distance from the estimated retinal plane using the proposed technique.

3.
Ann Biomed Eng ; 46(10): 1450-1464, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30014286

RESUMO

Microsurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons' unintended movements and prevent tools from entering forbidden regions such as vascular structures. The present work investigates the use of a handheld robotic tool (Micron) to automate vessel avoidance in microsurgery. In particular, we focused on vessel segmentation, implementing a deep-learning-based segmentation strategy in microscopy images, and its integration with a feature-based passive 3D reconstruction algorithm to obtain accurate and robust vessel position. We then implemented a virtual-fixture-based strategy to control the handheld robotic tool and perform vessel avoidance. Clay vascular phantoms, lying on a background obtained from microscopy images recorded during petroclival meningioma surgery, were used for testing the segmentation and control algorithms. When testing the segmentation algorithm on 100 different phantom images, a median Dice similarity coefficient equal to 0.96 was achieved. A set of 25 Micron trials of 80 s in duration, each involving the interaction of Micron with a different vascular phantom, were recorded, with a safety distance equal to 2 mm, which was comparable to the median vessel diameter. Micron's tip entered the forbidden region 24% of the time when the control algorithm was active. However, the median penetration depth was 16.9 µm, which was two orders of magnitude lower than median vessel diameter. Results suggest the system can assist surgeons in performing safe vessel avoidance during neurosurgical procedures.


Assuntos
Algoritmos , Microcirurgia/instrumentação , Procedimentos Neurocirúrgicos/instrumentação , Segurança , Humanos , Microcirurgia/métodos , Procedimentos Neurocirúrgicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA