Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(9): 5629-5639, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212695

RESUMO

This study reports the transcriptional activity of fin (Balaenoptera physalus) and blue whale (Balaenoptera musculus) peroxisome proliferator-activated receptor γ (PPARG), glucocorticoid receptor (GR), and thyroid hormone receptor ß (THRB), when exposed to 14 persistent organic pollutants (so-called "legacy" persistent organic pollutants (POPs)) and a synthetic mixture of POPs, using GAL4-UAS-based in vitro luciferase reporter gene assays. Polychlorinated biphenyls (PCBs) had both agonistic and antagonistic effects on PPARG and GR, and mainly antagonistic, except for PCB153, effects on THRB. 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites had mainly antagonistic effects on all of the receptors, except for o,p'-DDT. Given that the ligand-binding domain (LBD) of PPARG is the same in killer whales, white whales, polar bears, and humans, and that GR-LBD is identical in killer whales and minke whales and that the LBD of THRB is the same in killer whales, white whales, and humans, it is likely that the results of this study are representative for these other species as well. It is important to note that several environmental pollutants modulated the transcriptional activity of tested nuclear receptors at environmentally relevant concentrations for whales.


Assuntos
Poluentes Ambientais/análise , Baleia Comum , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Humanos , Receptores Citoplasmáticos e Nucleares
2.
Environ Sci Technol ; 54(18): 11365-11375, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808525

RESUMO

Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Ursidae , Tecido Adiposo/química , Animais , Poluentes Ambientais/análise , Feminino , Humanos , Mães , Noruega , Svalbard , Transcriptoma , Ursidae/genética
3.
Environ Sci Technol ; 54(12): 7388-7397, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32410455

RESUMO

Temporal trends of total mercury (THg) were examined in female polar bear (Ursus maritimus) hair (n = 199) from the Barents Sea in 1995-2016. In addition, hair values of stable isotopes (n = 190-197) of carbon (δ13C), sulfur (δ34S), and nitrogen (δ15N) and information on breeding status, body condition, and age were obtained. Stable isotope values of carbon and sulfur reflect dietary source (e.g., marine vs terrestrial) and the nitrogen trophic level. Values for δ13C and δ34S declined by -1.62 and -1.18‰ over the time of the study period, respectively, while values for δ15N showed no trend. Total Hg concentrations were positively related to both δ13C and δ34S. Yearly median THg concentrations ranged from 1.61 to 2.75 µg/g and increased nonlinearly by 0.86 µg/g in total over the study. Correcting THg concentrations for stable isotope values of carbon and sulfur and additionally breeding status and age slightly accelerated the increase in THg concentrations; however, confidence intervals of the raw THg trend and the corrected THg trend had substantial overlap. The rise in THg concentrations in the polar bear food web was possibly related to climate-related re-emissions of previously stored Hg from thawing sea-ice, glaciers, and permafrost.


Assuntos
Mercúrio , Ursidae , Animais , Carbono , Monitoramento Ambiental , Feminino , Mercúrio/análise , Nitrogênio , Enxofre
4.
Environ Sci Technol ; 54(2): 985-995, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31823610

RESUMO

In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea-Barents Sea as a proxy for a West-East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Focas Verdadeiras , Ursidae , Animais , Regiões Árticas , Feminino , Groenlândia
5.
Environ Sci Technol ; 53(2): 984-995, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548071

RESUMO

Temporal trends of persistent organic pollutants (POPs: PCBs, OH-PCBs, p, p'-DDE, HCB, ß-HCH, oxychlordane, BDE-47, and 153) in relation to changes in feeding habits and body condition in adult female polar bears ( Ursus maritimus) from the Barents Sea subpopulation were examined over 20 years (1997-2017). All 306 samples were collected in the spring (April). Both stable isotope values of nitrogen (δ15N) and carbon (δ13C) from red blood cells declined over time, with a steeper trend for δ13C between 2012 and 2017, indicating a decreasing intake of marine and high trophic level prey items. Body condition, based on morphometric measurements, had a nonsignificant decreasing tendency between 1997 and 2005, and increased significantly between 2005 and 2017. Plasma concentrations of BDE-153 and ß-HCH did not significantly change over time, whereas concentrations of Σ4PCB, Σ5OH-PCB, BDE-47, and oxychlordane declined linearly. Concentrations of p, p'-DDE and HCB, however, declined until 2012 and 2009, respectively, and increased thereafter. Changes in feeding habits and body condition did not significantly affect POP trends. The study indicates that changes in diet and body condition were not the primary driver of POPs in polar bears, but were controlled in large part by primary and/or secondary emissions of POPs.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Ursidae , Animais , Monitoramento Ambiental , Feminino , Hábitos
6.
Environ Sci Technol ; 52(5): 3211-3221, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363970

RESUMO

Variation in space-use is common within mammal populations. In polar bears, Ursus maritimus, some individuals follow the sea ice (offshore bears) whereas others remain nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with satellite collars (2000-2014, n = 152). First, we examined the differences in home range (HR) size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, n = 116) between offshore and coastal space-use. Second, we investigated how HR, space-use, body condition, and diet were related to plasma concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) ( n = 113), perfluoroalkyl substances (PFASs; n = 92), and hydroxylated-PCBs ( n = 109). Offshore females were in better condition and had a more specialized diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations were not related to space-use strategy, yet PCB concentrations increased with increasing latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS concentrations were 30-35% higher in offshore bears compared to coastal bears and also increased eastward. On the basis of the results we conclude that space-use of Barents Sea female polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Venenos , Bifenilos Policlorados , Ursidae , Animais , Feminino
7.
Environ Sci Technol ; 51(20): 11996-12006, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28918622

RESUMO

We monitored concentrations of per- and polyfluoroalkyl substances (PFASs) in relation to climate-associated changes in feeding habits and food availability in polar bears (Ursus maritimus) and arctic foxes (Vulpes lagopus) (192 plasma and 113 liver samples, respectively) sampled from Svalbard, Norway, during 1997-2014. PFASs concentrations became greater with increasing dietary trophic level, as bears and foxes consumed more marine as opposed to terrestrial food, and as the availability of sea ice habitat increased. Long-chained perfluoroalkyl carboxylates (PFCAs) in arctic foxes decreased with availability of reindeer carcasses. The ∼9-14% yearly decline of C6-8 perfluoroalkyl sulfonates (PFSAs) following the cease in C6-8 PFSA precursor production in 2001 indicates that the peak exposure was mainly a result of atmospheric transport of the volatile precursors. However, the stable PFSA concentrations since 2009-2010 suggest that Svalbard biota is still exposed to ocean-transported PFSAs. Long-chain ocean-transported PFCAs increased 2-4% per year and the increase in C12-14 PFCAs in polar bears tended to level off since ∼2009. Emerging short-chain PFASs showed no temporal changes. Climate-related changes in feeding habits and food availability moderately affected PFAS trends. Our results indicate that PFAS concentrations in polar bears and arctic foxes are mainly affected by emissions.


Assuntos
Poluentes Ambientais , Comportamento Alimentar , Fluorocarbonos/análise , Raposas , Ursidae , Animais , Regiões Árticas , Monitoramento Ambiental , Noruega , Svalbard
8.
Environ Res ; 158: 94-104, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28614731

RESUMO

As apex predators, polar bears (Ursus maritimus) are among the most heavily polluted organisms in the Arctic. In addition to this anthropogenic stressor, climate warming has been shown to negatively affect their body condition, reproductive output and survival. Among potential underlying physiological mechanisms, thyroid hormones (THs), which control thermoregulation, metabolism and reproduction, can be affected by a variety of both natural and anthropogenic factors. While THs have been extensively used as proxies for pollution exposure in mammals, including polar bears, there is a lack of knowledge of their natural variations. In this context, we examined seasonal variations in body condition and circulating TH concentrations in free-ranging female polar bears. Females with variable reproductive status (i.e., solitary, with cubs of the year or with yearlings) were sampled from locations with contrasted sea ice conditions. Furthermore, we studied THs in relation to levels of organo-halogenated contaminants. As predicted, solitary females were in better condition than females caring for offspring, especially in spring. In addition, TH levels were lower in autumn compared to spring, although this seasonal effect was mainly observed in solitary females. Finally, the negative relationships between organochlorine and perfluoroalkyl substances and some THs suggest a possible alteration of homeostasis of THs. Since the latter relationships were only observed during spring, we emphasize the importance of considering the ecological factors when using THs as proxies for pollution exposure. Yet, the combined effects of natural and anthropogenic stressors on THs might impair the ability of polar bears to adapt to ongoing climate changes.


Assuntos
Exposição Ambiental , Poluentes Ambientais/sangue , Hidrocarbonetos Halogenados/sangue , Hormônios Tireóideos/sangue , Ursidae/fisiologia , Animais , Regiões Árticas , Composição Corporal , Monitoramento Ambiental , Jejum , Feminino , Hibernação , Reprodução , Estações do Ano , Svalbard
9.
Environ Res ; 156: 128-131, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342348

RESUMO

Blood was sampled from nine free-ranging white whales (beluga whale, Delphinapterus leucas) from Svalbard, Norway during the summers of 2013 and 2014. Total concentrations of eleven thyroid hormones and metabolites were measured in serum using a novel liquid chromatography tandem mass spectrometry analytical method. Measurements of these compounds in plasma gave the same results as in serum. The three hormones found in highest concentrations were 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3) and thyroxine (T4). Traces of associated metabolites were also found.


Assuntos
Beluga/metabolismo , Análise Química do Sangue/métodos , Cromatografia Líquida , Espectrometria de Massas , Hormônios Tireóideos/sangue , Animais , Feminino , Masculino , Plasma/química , Soro/química , Svalbard , Hormônios Tireóideos/metabolismo
10.
Environ Sci Technol ; 50(19): 10708-10720, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27602593

RESUMO

We studied interactions between polar bear peroxisome proliferator-activated receptor gamma (pbPPARG) and selected compounds using a luciferase reporter assay and predictions through molecular docking. Furthermore, we studied adipogenesis by liver and adipose tissue extracts from a polar bear and three synthetic mixtures of contaminants in murine 3T3-L1 preadipocytes and polar bear adipose tissue-derived stem cells (pbASCs). PCB153 and p,p'-DDE antagonized pbPPARG, although their predicted receptor-ligand affinity was weak. PBDEs, tetrabromobisphenol A, and PCB170 had a weak agonistic effect on pbPPARG, while hexabromocyclododecane, bisphenol A, oxychlordane, and endosulfan were weak antagonists. pbPPARG-mediated luciferase activity was suppressed by synthetic contaminant mixtures reflecting levels measured in polar bear adipose tissue, as were transcript levels of PPARG and the PPARG target gene fatty acid binding protein 4 (FABP4) in pbASCs. Contaminant extracts from polar bear tissues enhanced triglyceride accumulation in murine 3T3-L1 cells and pbASCs, whereas triglyceride accumulation was not affected by the synthetic mixtures. Chemical characterization of extracts using nontarget methods revealed presence of exogenous compounds that have previously been reported to induce adipogenesis. These compounds included phthalates, tonalide, and nonylphenol. In conclusion, major legacy contaminants in polar bear adipose tissue exert antagonistic effects on PPARG, but adipogenesis by a mixture containing emerging compounds may be enhanced through PPARG or other pathways.


Assuntos
Adipogenia/efeitos dos fármacos , PPAR gama/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Camundongos , Simulação de Acoplamento Molecular , Ursidae/metabolismo
11.
Environ Sci Technol ; 48(19): 11654-61, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25215880

RESUMO

Arctic animals undergo large seasonal fluctuations in body weight. The effect of body condition on the distribution and composition of 16 perfluoroalkyl substances (PFASs) was investigated in liver, blood, kidney, adipose tissue, and muscle of Arctic foxes (Vulpes lagopus) from Svalbard (n = 18, age 1-3 years). PFAS concentrations were generally highest in liver, followed by blood and kidney, while lowest concentrations were found in adipose tissue and muscle. Concentrations of summed perfluorocarboxylic acids and perfluoroalkyl sulfonates were five and seven times higher, respectively, in adipose tissue of lean compared to fat foxes. In addition, perfluorodecanoate (PFDA) and perfluoroheptanesulfonate (PFHpS) concentrations in liver, kidney, and blood, and, perfluorononanoate (PFNA) in liver and blood, were twice as high in the lean compared to the fat foxes. The ratio between perfluorooctane sulfonamide (FOSA) and its metabolite perfluorooctanesulfonate (PFOS) was lowest in liver, muscle, and kidney, while significantly higher proportions of FOSA were found in adipose tissue and blood. The results of the present study suggest that toxic potential of exposure to PFAS among other pollutants in Arctic mammals may increase during seasonal emaciation. The results also suggest that body condition should be taken into account when assessing temporal trends of PFASs.


Assuntos
Ácidos Alcanossulfônicos/farmacocinética , Poluentes Ambientais/farmacocinética , Fluorocarbonos/farmacocinética , Raposas , Tecido Adiposo/efeitos dos fármacos , Animais , Regiões Árticas , Composição Corporal , Isótopos de Carbono/análise , Rim/efeitos dos fármacos , Limite de Detecção , Fígado/efeitos dos fármacos , Músculos/efeitos dos fármacos , Isótopos de Nitrogênio/análise , Svalbard , Distribuição Tecidual
12.
Mar Pollut Bull ; 199: 115936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154171

RESUMO

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.


Assuntos
Caniformia , Phoca , Phocoena , Ácidos Ftálicos , Orca , Baleias Piloto , Animais , Cachalote
13.
Environ Int ; 171: 107640, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525896

RESUMO

With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today's analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organofluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoroacetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.


Assuntos
Fluorocarbonos , Lontras , Ursidae , Animais , Animais Selvagens , Flúor/análise , Noruega
14.
Environ Sci Process Impacts ; 24(10): 1544-1576, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35179539

RESUMO

This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cadeia Alimentar , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Regiões Árticas , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Água
15.
Sci Total Environ ; 822: 153572, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121036

RESUMO

We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 µg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 µg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.


Assuntos
Mercúrio , Ursidae , Animais , Regiões Árticas , Cabelo/química , Mercúrio/análise , Noruega
16.
Sci Total Environ ; 834: 155221, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427623

RESUMO

Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.


Assuntos
Mercúrio , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Monitoramento Ambiental , Lagos , Mamíferos , Mercúrio/análise
17.
Environ Pollut ; 315: 120395, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228858

RESUMO

To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.


Assuntos
Balaenoptera , Retardadores de Chama , Focas Verdadeiras , Ursidae , Animais , Retardadores de Chama/análise , Animais Selvagens , Monitoramento Ambiental , Organofosfatos , Ésteres , Fosfatos
18.
Environ Sci Process Impacts ; 24(10): 1643-1660, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196982

RESUMO

Time series of contaminants in the Arctic are an important instrument to detect emerging issues and to monitor the effectiveness of chemicals regulation, based on the assumption of a direct reflection of changes in primary emissions. Climate change has the potential to influence these time trends, through direct physical and chemical processes and/or changes in ecosystems. This study was part of an assessment of the Arctic Monitoring and Assessment Programme (AMAP), analysing potential links between changes in climate-related physical and biological variables and time trends of persistent organic pollutants (POPs) in Arctic biota, with some additional information from the Antarctic. Several correlative relationships were identified between POP temporal trends in freshwater and marine biota and physical climate parameters such as oscillation indices, sea-ice coverage, temperature and precipitation, although the mechanisms behind these observations remain poorly understood. Biological data indicate changes in the diet and trophic level of some species, especially seabirds and polar bears, with consequences for their POP exposure. Studies from the Antarctic highlight increased POP availability after iceberg calving. Including physical and/or biological parameters in the POP time trend analysis has led to small deviations in some declining trends, but did generally not change the overall direction of the trend. In addition, regional and temporary perturbations occurred. Effects on POP time trends appear to have been more pronounced in recent years and to show time lags, suggesting that climate-related effects on the long time series might be gaining importance.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Monitoramento Ambiental , Mudança Climática , Fatores de Tempo , Ecossistema , Regiões Antárticas , Regiões Árticas , Poluentes Ambientais/análise , Biota
19.
Sci Total Environ ; 839: 155803, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561904

RESUMO

Temporal trend analysis of (total) mercury (THg) concentrations in Arctic biota were assessed as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury Assessment. A mixed model including an evaluation of non-linear trends was applied to 110 time series of THg concentrations from Arctic and Subarctic biota. Temporal trends were calculated for full time series (6-46 years) and evaluated with a particular focus on recent trends over the last 20 years. Three policy-relevant questions were addressed: (1) What time series for THg concentrations in Arctic biota are currently available? (2) Are THg concentrations changing over time in biota from the Arctic? (3) Are there spatial patterns in THg trends in biota from the Arctic? Few geographical patterns of recent trends in THg concentrations were observed; however, those in marine mammals tended to be increasing at more easterly longitudes, and those of seabirds tended to be increasing in the Northeast Atlantic; these should be interpreted with caution as geographic coverage remains variable. Trends of THg in freshwater fish were equally increasing and decreasing or non-significant while those in marine fish and mussels were non-significant or increasing. The statistical power to detect trends was greatly improved compared to the 2011 AMAP Mercury Assessment; 70% of the time series could detect a 5% annual change at the 5% significance level with power ≥ 80%, while in 2011 only 19% met these criteria. Extending existing time series, and availability of new, powerful time series contributed to these improvements, highlighting the need for annual monitoring, particularly given the spatial and temporal information needed to support initiatives such as the Minamata Convention on Mercury. Collecting the same species/tissues across different locations is recommended. Extended time series from Alaska and new data from Russia are also needed to better establish circumarctic patterns of temporal trends.


Assuntos
Mercúrio , Animais , Regiões Árticas , Biota , Monitoramento Ambiental , Água Doce , Mamíferos , Mercúrio/análise
20.
Sci Total Environ ; 829: 154445, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35304145

RESUMO

There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.


Assuntos
Caniformia , Mercúrio , Focas Verdadeiras , Ursidae , Animais , Regiões Árticas , Monitoramento Ambiental , Mamíferos , Mercúrio/toxicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA