RESUMO
We describe in the current paper an experimental and computational study of three methylated uracils, in particular, the 5,6-dimethyl-, 1,3,5-trimethyl-, and 1,3,5,6-tetramethyl derivatives. The values of the standard (p(0) = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K have been determined. The energies of combustion were measured by static bomb combustion calorimetry, and from the results obtained, the standard molar enthalpies of formation in the crystalline state at T = 298.15 K were calculated. The enthalpies of sublimation were determined using the transpiration method in a saturated N(2) stream. Values of -(376.2 ± 2.6), -(355.9 ± 3.0), and -(381.7 ± 2.8) kJ·mol(-1) for the gas-phase enthalpies of formation at T = 298.15 K of 5,6-dimethyluracil, 1,3,5-trimethyluracil, and 1,3,5,6-tetramethyluracil, respectively, were obtained from the experimental thermochemical study. An extended theoretical study with the G3 and the G4 quantum-chemical methods has been carried out for all the possible methylated uracils. There is a very good agreement between experimental and calculated enthalpies of formation for the three derivatives studied. A Free-Wilson analysis on G4-calculated enthalpies of formation has been carried out, and the contribution of methylation in the different positions of the uracil ring has been estimated.
Assuntos
Modelos Moleculares , Termodinâmica , Uracila/análogos & derivados , Uracila/química , Varredura Diferencial de Calorimetria , Metilação , Estrutura Molecular , Transição de Fase , Uracila/síntese química , Pressão de VaporRESUMO
Very good linear correlations between experimental and calculated enthalpies of formation in the gas phase (G3(MP2)//B3LYP and G3) for 48 thiophene derivatives have been obtained. These correlations permit a correction of the calculated enthalpies of formation in order to estimate more reliable "experimental" values for the enthalpies of formation of substituted thiophenes, check the reliability of experimental measurements, and also predict the enthalpies of formation of new thiophenes that are not available in the literature. Moreover, the difference between the enthalpies of formation of isomeric thiophenes with the same substituent in positions 2 and 3 of the ring has been analyzed. Likewise, a comparison of the substituent effect in the thiophene and benzene rings has been established.
Assuntos
Teoria Quântica , Temperatura , Tiofenos/química , Estrutura MolecularRESUMO
This paper reports an experimental and computational thermochemical study on 2-thiobarbituric acid (2-thioxodihydropyrimidine-4,6(1H,5H)-dione), [CAS 504-17-6]. The value of the standard (p(0) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by bomb combustion calorimetry, using a rotatory bomb, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(396.8 ± 0.9) kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as (118.3 ± 2.2) kJ·mol(-1). From these results a value of -(278.5 ± 2.4) kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study of the molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.
RESUMO
This paper reports an experimental and computational thermochemical study on 1,3-dimethylbarbituric acid. The value of the standard (p° = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -639.6 ± 1.9 kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as 92.3 ± 0.6 kJ·mol(-1). From these results a value of -547.3 ± 2.0 kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.
Assuntos
Barbitúricos/química , Teoria Quântica , Termodinâmica , Estrutura MolecularRESUMO
This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.
Assuntos
Barbitúricos/química , Teoria Quântica , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Conformação Molecular , Termodinâmica , Triazinas/químicaRESUMO
A computational study of the structural and thermochemical properties of N-phenyl (open) and N-alkyl (cyclic) ureas, through the use of M05-2X and B3LYP density functional theory calculations has been carried out. The consistency of the literature experimental results has been confirmed, and using mainly isodesmic reactions, the unknown Delta(f)H(0)(g) of the other urea derivatives were estimated. The experimental results together with the theoretical information have permitted the study of the effect of phenyl, p- and m-chlorophenyl, alkyl, and carbonyl substitutions on the thermodynamical stability of urea and its cyclic derivatives. The peculiar behavior of the N-tert-butyl substituent in cyclic ureas has been related to geometric deformations.
Assuntos
Barbital/química , Carbanilidas/química , Hidantoínas/química , Imidazolidinas/química , Compostos de Metilureia/química , Teoria Quântica , Temperatura , Ureia/química , Modelos Moleculares , Conformação Molecular , Compostos de Fenilureia/química , TermodinâmicaRESUMO
This paper reports an experimental and theoretical study of the structures and standard (p(o) = 0.1 MPa) molar enthalpies of formation of 3H-1,3-benzoxazole-2-thione and 3H-1,3-benzothiazole-2-thione. The enthalpies of combustion and sublimation were measured by rotary bomb combustion calorimetry and the Knudsen effusion technique, and gas-phase enthalpies of formation values at T = 298.15 K of (42.0 +/- 2.7) and (205.5 +/- 3.8) kJ x mol(-1) for 3H-1,3-benzoxazole-2-thione and 3H-1,3-benzothiazole-2-thione, respectively, were determined. G3-calculated enthalpies of formation are in excellent agreement with the experimental values. The present work discusses the question of tautomerism explicitly for both compounds and compares the energetics of all the related species. A comparison of the theoretical results with the structural data is also reported.
Assuntos
Benzotiazóis/química , Benzoxazóis/química , Teoria Quântica , Tionas/química , Cristalografia por Raios X , Elétrons , Gases/química , Isomerismo , Modelos Moleculares , Conformação Molecular , TermodinâmicaRESUMO
This paper reports an experimental and a theoretical study of the structures and standard (p(o) = 0.1 MPa) molar enthalpies of formation of the synthetic reagents 1,3-thiazolidine-2-thione [CAS 96-53-7] and 1,3-oxazolidine-2-thione [CAS 5840-81-3]. The enthalpies of combustion and sublimation were measured by rotary bomb combustion calorimetry, and the Knudsen effusion technique and gas-phase enthalpies of formation values at T = 298.15 K of (97.1 +/- 4.0) and -(74.4 +/- 4.6) kJ.mol(-1) for 1,3-thiazolidine-2-thione and 1,3-oxazolidine-2-thione, respectively, were determined. G3-calculated enthalpies of formation are in reasonable agreement with the experimental values. In the solid state, 1,3-thiazolidine-2-thione exists in two polymorphic forms (monoclinic and triclinic) and 1,3-oxazolidine-2-thione exits in the triclinic form. The isostructural nature of these compounds and comparison of their molecular and crystal structures have been analyzed. The experimental X-ray powder diffractograms have been compared with the calculated patterns from their structures for identification of the polymorphic samples used in this study. A comparison of our results with literature thermochemical and structural data for related compounds is also reported.
RESUMO
The relative stabilities of 2,2'- and 3,3'-bithiophenes were evaluated by experimental thermochemistry and the results compared with data obtained from state of the art calculations, which were also extended to 2,3'-bithiophene. The standard (p degrees = 0.1 MPa) molar enthalpies of formation of crystalline 2,2'-bithiophene and 3,3'-bithiophene were calculated from the standard molar energies of combustion, in oxygen, to yield CO(2) (g) and H(2)SO(4) x 115 H(2)O, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of these two compounds were measured as a function of temperature by Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation, at T = 298.15 K, were derived from the Clausius-Clapeyron equation. The experimental values were used to calculate the standard (p(o) = 0.1 MPa) enthalpies of formation of the title compounds in the gaseous phase; the results were analyzed and interpreted in terms of enthalpic increments and molecular structure. Standard ab initio molecular orbital calculations at the G3(MP2)//B3LYP level were performed. Enthalpies of formation, using homodesmotic reactions, were calculated and compared with experimental data. The computational study was also extended to the isomeric compound 2,3'-bithiophene. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out. Finally, bond dissociation enthalpies (BDE) and enthalpies of formation of thienyl radicals were also computed.
RESUMO
The enthalpies of formation in the condensed and gas states, Delta f H m degrees (cd) and Delta f H m degrees (g), of 2- and 3-thiopheneacetic acids were derived from their respective enthalpies of combustion in oxygen, measured by a rotating bomb calorimeter, and the variation of vapor pressure with temperature determined by the Knudsen effusion technique. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compounds has been carried out. Calculated Delta f H m degrees (g) values using atomization and isodesmic reactions are compared with the experimental data. Experimental and theoretical results show that the 3-thiopheneacetic acid is thermodynamically more stable than the 2-isomer.
Assuntos
Acetatos/química , Simulação por Computador , Modelos Químicos , Teoria Quântica , Termodinâmica , Tiofenos/química , Calorimetria , Elétrons , Estrutura Molecular , Oxigênio/química , Pressão , TemperaturaRESUMO
This paper reports the value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K for barbituric acid. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and transference (transpiration) method in a saturated N2 stream and a gas-phase enthalpy of formation value of -(534.3 +/- 1.7) kJ x mol(-1) was determined at T = 298.15 K. G3-calculated enthalpies of formation are in very good agreement with the experimental value. The behavior of the sample as a function of the temperature was studied by differential scanning calorimetry, and a new polymorph of barbituric acid at high temperature was found. In the solid state, two anhydrous forms are known displaying two out of the six hydrogen-bonding patterns observed in the alkyl/alkenyl derivatives retrieved from the Cambridge Crystallographic Database. The stability of these motifs has been analyzed by theoretical calculations. X-ray powder diffraction technique was used to establish to which polymorphic form corresponds to the commercial sample used in this study and to characterize the new form at high temperature.
RESUMO
The enthalpies of formation of pure liquid and gas-phase (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione are examined in the light of some more recent NMR studies on the enthalpy differences between gas-phase enthalpies of the two tautomers. Correlation gas chromatography experiments are used to evaluate the vaporization enthalpies of the pure tautomers. Values of (51.2 +/- 2.2) and (50.8 +/- 0.6) kJ.mol(-1) are measured for pure 2,4-pentanedione and (Z)-4-hydroxy-3-penten-2-one, respectively. The value of (50.8 +/- 0.6) kJ.mol(-1) can be contrasted to a value of (43.2 +/- 0.2) kJ.mol(-1) calculated for pure (Z)-4-hydroxy-3-penten-2-one when the vaporization enthalpy is measured in a mixture of tautomers. The difference is attributed to an endothermic enthalpy of mixing that destabilizes the mixture relative to the pure components. Calculation of new enthalpies of formation for (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione in both the gas, Delta(f)H degrees (m)(g) = (-378.2 +/- 1.2) and (-358.9 +/- 2.5) kJ.mol(-1), respectively, and liquid phases, Delta(f)H degrees (m)(l) = (-429.0 +/- 1.0) and (-410.1 +/- 1.2) kJ.mol(-1), respectively, results in enthalpy differences between the two tautomers both in the liquid and gas phases that are identical within experimental error, and in excellent agreement with recent gas-phase NMR studies.
RESUMO
In order to understand the antiaromaticity of maleimides, the enthalpies of formation and sublimation of N-methylmaleimide, N-methylsuccinimide, N-methylphthalimide, and N-benzoyl-N-methylbenzamide were measured. The numerical values of enthalpies of formation for these compounds in the solid state are -329.3 +/- 1.4, -469.8 +/- 1.6, -325.0 +/- 2.1, and -239.6 +/- 3.8 kJ mol(-)(1), respectively, while the corresponding values in the gaseous state are -256.0 +/- 1.5, -389.7 +/- 1.6, -233.9 +/- 2.2, and -119.5 +/- 3.8 kJ mol(-)(1), respectively. The values of enthalpies of sublimation for the same compounds are 73.3 +/- 0.5, 80.1 +/- 0.3, 91.1 +/- 0.5, and 120.1 +/- 0.4 kJ mol(-)(1), respectively. We find that the antiaromaticity of maleimides is only modest.
RESUMO
Calorimetric measurements are expected to provide useful data regarding the relative stability of α- versus ß-amino acid isomers, which, in turn, may help us to understand why nature chose α- instead of ß-amino acids for the formation of the biomolecules that are essential constituents of life on earth. The present study is a combination of the experimental determination of the enthalpy of formation of N-benzyl-ß-alanine, and high-level ab initio calculations of its molecular structure. The experimentally determined standard molar enthalpy of formation of N-benzyl-ß-alanine in gaseous phase at T = 298.15 K is -(298.8 ± 4.8) kJ·mol(-1), whereas its G3(MP2)//B3LYP-calculated enthalpy of formation is -303.7 kJ·mol(-1). This value is in very good agreement with the experimental one. Although the combustion experiments of N-benzyl-α-alanine were unsuccessful, its calculated enthalpy of formation is -310.7 kJ·mol(-1); thus, comparison with the corresponding experimental enthalpy of formation of N-benzyl-ß-alanine, -(298.8 ± 4.8) kJ/mol, is in line with the concept that the more branched amino acid (α-alanine) is intrinsically more stable than the linear ß-amino acid, ß-alanine.
Assuntos
Aminobutiratos/química , Modelos Químicos , Varredura Diferencial de Calorimetria , Isomerismo , Conformação Molecular , TermodinâmicaRESUMO
In the current paper we present the results of our quantum chemical (G2, G2(MP2), and G3) study of the structure and energetics of carboxylic acids and their chalcogen analogues. In the particular, calculations and accompanying natural bond orbital (NBO) and atoms in molecules (AIM) analyses were performed on all species with the generic formula RC(âX)YR' (X, Y = O, S, Se and R = R' = CH(3)). Energies, enthalpies, and free energies of formation, resonance energies, interchalcogen methyl transfer energies and their energies of activation, and heavy atom bond lengths and angles are all discussed. A comparison of the calculated results with the sparse experimentally available data shows good agreement. Trends are also presented.
RESUMO
This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and ß-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and ß-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and ß-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.
Assuntos
Alanina/química , Simulação por Computador , Termodinâmica , beta-Alanina/química , Varredura Diferencial de Calorimetria , Estrutura MolecularRESUMO
This paper reports an experimental and theoretical study of the standard (p(degrees) = 0.1 MPa) molar enthalpies of formation at T = 298.15 K of the sulfur-containing amino acids l-cysteine [CAS 52-90-4] and l-cystine [CAS 56-89-3]. The standard (p(degrees) = 0.1 MPa) molar enthalpies of formation of crystalline l-cysteine and l-cystine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2SO4.115H2O, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of l-cysteine were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the Clausius-Clapeyron equation. The experimental values were used to calculate the standard (p(degrees) = 0.1 MPa) enthalpy of formation of l-cysteine in the gaseous phase, DeltafH(degrees)m(g) = -382.6 +/- 1.8 kJ x mol-1. Due to the low vapor pressures of l-cystine and since this compound decomposes at the temperature range required for a possible sublimation, it was not possible to determine its enthalpy of sublimation. Standard ab initio molecular orbital calculations at the G3(MP2)//B3LYP and/or G3 levels were performed. Enthalpies of formation, using atomization and isodesmic reactions, were calculated and compared with experimental data. A value of -755 +/- 10 kJ x mol-1 was estimated for the enthalpy of formation of cystine. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out. Finally, bond dissociation enthalpies (BDE) of S-H, S-S, and C-S bonds, and enthalpies of formation of l-cysteine-derived radicals, were also computed.
Assuntos
Aminoácidos/química , Cisteína/química , Cistina/química , Compostos de Sulfidrila/química , Enxofre/química , Simulação por Computador , Humanos , Conformação Molecular , Estrutura Molecular , TermodinâmicaRESUMO
The enthalpies of formation in the condensed and gas states, DeltafH degrees m(cd) and DeltafH degrees m(g), of 1,3- and 1,4-oxathiane sulfones were derived from their respective enthalpies of combustion in oxygen, measured by a rotating bomb calorimeter and the variation of vapor pressures with temperatures determined by the Knudsen effusion technique. Standard ab initio molecular orbital calculations at the G2(MP2) and G3 levels were performed, and a theoretical study on molecular and electronic structure of the compounds has been carried out. Calculated DeltafH degrees m(g) values at the G3 level using atomization reactions agree well with the experimental ones. These experimental and theoretical studies support that the destabilization found in 1,3-oxathiane sulfone, 11.2 kJ mol-1 respecting to 1,4-oxathiane sulfone, is due to the electrostatic repulsion between the negative charges of the axial oxygen of the sulfone and the oxygen of the ring and apparently masks any stabilization originating from the hyperconjugative nO --> sigma*C-SO2 stereoelectronic interaction.
RESUMO
Thiophene-based compounds have widespread use in modern drug design, biodiagnostics, electronic and optoelectronic devices, and conductive polymers. The present study reports an experimental and computational thermochemical study on the relative stabilities of 2- and 3-thiopheneacetic acid methyl esters. The enthalpies of combustion and vaporization were measured by a rotating-bomb combustion calorimeter, Calvet microcalorimetry, and correlation gas chromatography, and the gas-phase enthalpies of formation at T=298.15 K were determined. Standard ab initio molecular orbital calculations at the G3 level were performed, and a theoretical study of the molecular and electronic structure of the compounds studied was carried out. Calculated enthalpies of formation, using atomization and isodesmic reactions are in very good agreement with the experimental results.