Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687185

RESUMO

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

2.
Sci Rep ; 14(1): 19117, 2024 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155284

RESUMO

Accurate assessment of vital parameters is essential for diagnosis and triage of critically ill patients, but not always feasible in out-of-hospital settings due to the lack of suitable devices. We performed an extensive validation of a novel prototype in-ear device, which was proposed for the non-invasive, combined measurement of core body temperature (Tc), oxygen saturation (SpO2), and heart rate (HR) in harsh environments. A pilot study with randomized controlled design was conducted in the terraXcube environmental chamber. Participants were subsequently exposed to three 15 min test sessions at the controlled ambient temperatures of 20 °C, 5 °C, and - 10 °C, in randomized order. Vital parameters measured by the prototype were compared with Tc measurements from commercial esophageal (reference) and tympanic (comparator) probes and SpO2 and HR measurements from a finger pulse-oximeter (reference). Performance was assessed in terms of bias and Lin's correlation coefficient (CCC) with respect to the reference measurements and analyzed with linear mixed models. Twenty-three participants (12 men, mean (SD) age, 35 (9) years) completed the experimental protocol. The mean Tc bias of the prototype ranged between - 0.39 and - 0.80 °C at ambient temperatures of 20 °C and 5 °C, and it reached - 1.38 °C only after 15 min of exposure to - 10 °C. CCC values ranged between 0.07 and 0.25. SpO2 and HR monitoring was feasible, although malfunctioning was observed in one third of the tests. SpO2 and HR bias did not show any significant dependence on environmental conditions, with values ranging from - 1.71 to - 0.52% for SpO2 and 1.12 bpm to 5.30 bpm for HR. High CCC values between 0.81 and 0.97 were observed for HR in all environmental conditions. This novel prototype device for measuring vital parameters in cold environments demonstrated reliability of Tc measurements and feasibility of SpO2 and HR monitoring. Through non-invasive and accurate monitoring of vital parameters from the ear canal our prototype may offer support in triage and treatment of critically ill patients in harsh out-of-hospital conditions.


Assuntos
Temperatura Corporal , Frequência Cardíaca , Humanos , Masculino , Feminino , Adulto , Frequência Cardíaca/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Projetos Piloto , Oximetria/instrumentação , Oximetria/métodos , Saturação de Oxigênio/fisiologia , Pessoa de Meia-Idade , Temperatura
3.
Scand J Trauma Resusc Emerg Med ; 32(1): 65, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075543

RESUMO

IMPORTANCE: Emergency medical services (EMS) providers transiently ascend to high altitude for primary missions and secondary transports in mountainous areas in helicopters that are unpressurised and do not have facilities for oxygen supplementation. The decrease in cerebral oxygen saturation can lead to impairment in attention and reaction time as well as in quality of care during acute exposure to altitude. OBJECTIVE: The primary aim of the current study was to investigate the effect of oxygen supplementation on cognitive performance in Helicopter EMS (HEMS) providers during acute exposure to altitude. DESIGN, SETTING, AND PARTICIPANTS: This interventional, randomized, controlled, double-blind, cross-over clinical trial was conducted in October 2021. Each trial used a simulated altitude scenario equivalent to 4000 m, in which volunteers were exposed to hypobaric hypoxia with a constant rate of ascent of 4 m/s in an environmental chamber under controlled, replicable, and safe conditions. Trials could be voluntarily terminated at any time. Inclusion criteria were being members of emergency medical services and search and rescue services with an age between 18 and 60 years and an American Society of Anesthesiologists physical status class I. EXPOSURES: Each participant conducted 2 trials, one in which they were exposed to altitude with oxygen supplementation (intervention trial) and the other in which they were exposed to altitude with ambient air supplementation (control trial). MAIN OUTCOMES AND MEASURES: Measurements included peripheral oxygen saturation (SpO2), cerebral oxygenation (ScO2), breathing and heart rates, Psychomotor Vigilance Test (PVT), Digit-Symbol Substitution Test (DSST), n-Back test (2-BACK), the Grooved Pegboard test, and questionnaires on subjective performance, stress, workload, and positive and negative affect. Paired t-tests were used to compare conditions (intervention vs. control). Data were further analyzed using generalized estimating equations (GEE). RESULTS: A total of 36 volunteers (30 men; mean [SD] age, 36 [9] years; mean [SD] education, 17 [4] years) were exposed to the intervention and control trials. The intervention trials, compared with the control trials, had higher values of SpO2 (mean [SD], 97.9 [1.6] % vs. 86 [2.3] %, t-test, p = 0.004) and ScO2 (mean [SD], 69.9 [5.8] % vs. 62.1 [5.2] %, paired t-test, p = 0.004). The intervention trials compared with the control trials had a shorter reaction time (RT) on the PVT after 5 min (mean [SD], 277.8 [16.7] ms vs. 282.5 [15.3] ms, paired t-test, p = 0.006) and after 30 min (mean [SD], 276.9 [17.7] ms vs. 280.7 [15.0] ms, paired t-test, p = 0.054) at altitude. While controlling for other variables, there was a RT increase of 0.37 ms for each % of SpO2 decrease. The intervention trials showed significantly higher values for DSST number of correct responses (with a difference of mean [SD], 1.2 [3.2], paired t-test, p = 0.035). Variables in the intervention trials were otherwise similar to those in the control trials for DSST number of incorrect responses, 2-BACK, and the Grooved Pegboard test. CONCLUSIONS AND RELEVANCE: This randomized clinical trial found that oxygen supplementation improves cognitive performance among HEMS providers during acute exposure to 4000 m altitude. The use of oxygen supplementation may allow to maintain attention and timely reaction in HEMS providers. The impact of repeated altitude ascents on the same day, sleep-deprivation, and additional stressors should be investigated. Trial registration NCT05073406, ClinicalTrials.gov trial registration.


Assuntos
Altitude , Estudos Cross-Over , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Oxigenoterapia/métodos , Cognição/fisiologia , Oxigênio/sangue , Pessoa de Meia-Idade , Resgate Aéreo , Doença da Altitude/terapia , Serviços Médicos de Emergência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA