Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 375, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953826

RESUMO

Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of "post-antibiotic era". It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Humanos , RNA Viral , SARS-CoV-2
2.
Anal Chem ; 92(6): 4266-4274, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32050756

RESUMO

Antimicrobial resistance is a grave threat to human life. Currently used time-consuming antibiotic susceptibility test (AST) methods limit physicians in selecting proper antibiotics. Hence, we developed a rapid AST using electroanalysis with a 15 min assay time, called EAST, which is live-monitored by time-lapse microscopy video. The present work reports systematical electrochemical analysis and standardization of protocol for EAST measurement. The proposed EAST is successfully applied for Gram-positive Bacillus subtilis and Gram-negative Escherichia coli as model organisms to monitor bacterial concentration, decay kinetics in the presence of various antibiotics (ciprofloxacin, cefixime, and amoxycillin), drug efficacy, and IC50. Bacterial decay kinetics in the presence of antibiotics were validated by the colony counting method, field emission scanning electron microscopy, and atomic force microscopy image analysis. The EAST predicts the antibiotic susceptibility of bacteria within 15 min, which is a significant advantage over existing techniques that consume hours to days. The EAST was explored further by using bacteria-friendly l-lysine-functionalized cerium oxide nanoparticle coated indium tin oxide as a working electrode to observe the enhanced electron-transfer rate in the EAST. The results are very significant for future miniaturization and automation. The proposed EAST has huge potential in the development of a rapid AST device for applications in the clinical and pharmaceutical industries.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Técnicas Eletroquímicas , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Amoxicilina/química , Amoxicilina/farmacologia , Antibacterianos/química , Cefixima/química , Cefixima/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Fatores de Tempo
3.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961731

RESUMO

Theranostic approach is currently among the fastest growing trends in cancer treatment. It implies the creation of multifunctional agents for simultaneous precise diagnosis and targeted impact on tumor cells. A new type of theranostic complexes was created based on NaYF4: Yb,Tm upconversion nanoparticles coated with polyethylene glycol and functionalized with the HER2-specific recombinant targeted toxin DARPin-LoPE. The obtained agents bind to HER2-overexpressing human breast adenocarcinoma cells and demonstrate selective cytotoxicity against this type of cancer cells. Using fluorescent human breast adenocarcinoma xenograft models, the possibility of intravital visualization of the UCNP-based complexes biodistribution and accumulation in tumor was demonstrated.


Assuntos
Nanopartículas Metálicas/química , Nanomedicina Teranóstica , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Corantes Fluorescentes/química , Fluoretos/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Receptor ErbB-2/metabolismo , Túlio/química , Transplante Heterólogo , Itérbio/química , Ítrio/química
4.
Nanomedicine ; 12(8): 2415-2427, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381067

RESUMO

The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.


Assuntos
Nanopartículas , Neutrófilos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Ácido Láctico , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Dalton Trans ; 53(28): 11697-11712, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38912924

RESUMO

DNA being the necessary element in cell regeneration, controlled cellular apoptosis via DNA binding/cleaving is considered an approach to combat cancer cells. The widely prescribed metallodrug cisplatin has shown interactions with the guanine-N7 center, and a plethora of complexes are continually developed to enhance crosslinking properties as well as covalent and non-covalent interactions. Two pentadentate ligands, L1 (1-(6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) and L2 (1-(6-(1-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine), were synthesized together with their respective copper(II) complexes [1](ClO4)2 and [2](ClO4)2, which crystallized in a trigonal bipyramidal fashion. Different analytical and spectroscopic methods confirmed their formation, and their redox behaviour was also examined. The interactions of salmon sperm DNA (ss-DNA) with these two complexes were explored using absorbance spectroscopy, and they both exhibited a binding affinity (Kb) of ∼104 M-1. Fluorescence quenching experiments with ethidium bromide (EB)-bound DNA (EB-DNA) were also performed, and Stern-Volmer constant (KSV) values of 6.93 × 103 and 2.34 × 104 M-1 for [1](ClO4)2 and [2](ClO4)2, respectively, were obtained. Furthermore, DNA conformational changes due to the interactions of both complexes were validated via circular dichroism. We also assessed the DNA cleavage property of these complexes, which resulted in the linearization of circular plasmid DNA. This finding was supported by studying the growth of MDA-MB-231 breast cancer cells upon treatment with both Cu(II) complexes; IC50 values of 5.34 ± 1.02 µM and 0.83 ± 0.18 µM were obtained for [1](ClO4)2 and [2](ClO4)2, respectively. This validates their affinity towards DNA, and these insights can be further utilized for non-platinum based economical metallodrug development based on first row transition metals.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , DNA , Piridinas , Cobre/química , Cobre/farmacologia , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , DNA/química , DNA/metabolismo , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Clivagem do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Salmão , Animais , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular
6.
Artif Cells Nanomed Biotechnol ; 52(1): 46-58, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156875

RESUMO

Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA nanocomposite wrapped with Ag using a simple synthesis method, characterised and tested on small cell lung cancer and antibacterial strains. Incorporating Ag in Fe3O4@SiO2@PDA provides promising advantages in biomedical applications. The magnetic Fe3O4 nanoparticles were coated with SiO2 to obtain negatively charged surface which is then coated with polydopamine (PDA). Then silver nanoparticles were assembled on Fe3O4@SiO2@PDA surface, which results in the formation core-shell nanocomposite. The synthesised nanocomposite were characterized using SEM-EDAX, dynamic light scattering, XRD, FT-IR and TEM. In this work, we report the anticancer activity of silver nanoparticles against H1299 lung cancer cell line using MTT assay. The cytotoxicity data revealed that the IC50 of Fe3O4@SiO2@PDA@Ag against H1299 lung cancer nanocomposites cells was 21.52 µg/mL. Furthermore, the biological data of nanocomposites against Gram-negative 'Pseudomonas aeruginosa' and Gram-positive 'Staphylococcus aureus' were carried out. The range of minimum inhibitory concentration was found to be 115 µg/mL where gentamicin was used as a standard drug. The synthesized AgNPs proves its supremacy as an efficient biomedical agent and AgNPs may act as potential beneficial molecule in lung cancer chemoprevention and antibacterial strains.


In the present study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA@Ag nanocomposite.We have investigated the dose-dependent cellular toxicity of silver nanocomposite in the nonsmall cell lung cancer cell line H1299 using MTT assay.Also, we have evaluated the mode of cell death using apoptosis.We have also evaluated the bioactivity of AgNPs on both Gram-positive and Gram-negative bacterial cells with highly efficient antibacterial potency.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Nanocompostos , Humanos , Prata/farmacologia , Prata/química , Dióxido de Silício/química , Nanopartículas Metálicas/química , Neoplasias Pulmonares/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Nanocompostos/química , Linhagem Celular
7.
Dalton Trans ; 53(3): 1163-1177, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105760

RESUMO

Mixed ligand copper(II) complexes [Cu(L1)(bpy)](ClO4)21 and [Cu(L2)(bpy)](ClO4)22 (where L1 = 1-(anthracen-9-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine, L2 = 1-(pyren-1-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine and bpy = 2,2'-bipyridine) were synthesised and characterised thoroughly via different analytical and spectroscopic techniques i.e., UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, HRMS and EPR spectroscopy. The molecular structures of the synthesised complexes were obtained using the single-crystal X-ray diffraction technique. Both complexes exhibited penta-coordinated and acquired distorted square pyramidal geometry. The redox behaviour of complexes 1 and 2 was investigated by employing cyclic voltammetry. The DNA binding study was carried out by UV-vis spectrophotometry using double-stranded salmon sperm DNA (ds-ss-DNA). The binding constant (Kb) values of 1 and 2 were 0.11 × 104 M-1 and 1.05 × 104 M-1, respectively, which indicates that 2 has better binding ability than 1. This might be due to the higher conjugative abilities with the extended surface area of the aromatic pyrene ring compared to the anthracene moiety. The fluorescence quenching experiments were also performed with EB bound DNA (EB-DNA) and Stern-Volmer constant (KSV) values were calculated as 1.23 × 105 M-1 and 1.39 × 105 M-1 for 1 and 2, respectively, suggesting that 2 showed stronger interaction with ss-DNA than 1. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA varying with 1 and 2. Evaluation of the DNA binding properties of the complexes to linearized plasmid DNA indicated that 2 had modest DNA binding properties, which is a pre-requisite for a genotoxic agent. The effect of 1 and 2 on cell survival was analysed using HeLa cells by MTT assay and it was observed that the IC50 values of 1 and 2 were 43.7 µM and 18.6 µM, respectively. Our study paves the way for the designing of bio-inspired novel mixed metal complexes, which shows promising results for further exploration of molecular and mechanistic studies towards the development of non-platinum based economical metallodrugs.


Assuntos
Complexos de Coordenação , Cobre , Masculino , Humanos , Cobre/química , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Células HeLa , Sêmen/metabolismo , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes
8.
Analyst ; 138(20): 6144-53, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23967444

RESUMO

This work reports the study of optimization of the reaction parameters on the synthesis of high quality CuInS2 and AgInS2 nanocrystals for bioimaging applications. The concentration of reaction precursors (e.g. Ag, Cu, In and S) plays a key role in determining the emission profile of these ternary quantum dots (QDs). By carefully varying the precursor compositions, the emission of QD can be tuned from red to near infrared (NIR) region. Taking the advantages of NIR emission, which possesses minimal absorption in biological tissues, we have also prepared water-dispersible CuInS2/ZnS and AgInS2/ZnS nanocrystals and demonstrated the high biocompatibility for both deep tissue penetration and tumor targeting. The QDs were stabilized in Pluronic F127 block copolymer micelles, offering us optically and colloidally stable contrast agents for in vitro and in vivo imaging. Two-photon excitation of QD has also been demonstrated, accomplishing a NIR-to-NIR transaction. This study devotes the key steps in promoting the use of ternary QDs as low-toxic, photostable, and cadmium-free semiconductor nanocrystal formulation for multiple imaging applications.


Assuntos
Cobre/química , Imagem Molecular/métodos , Nanopartículas/química , Prata/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Células Cultivadas , Índio/química , Camundongos , Selênio/química
10.
Pharmaceutics ; 15(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242697

RESUMO

Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.

11.
J Mater Chem B ; 11(21): 4785-4798, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190982

RESUMO

Magnetic nanoparticles (MNPs) have captivated the scientific community towards biomedical applications owing to their numerous distinctive physio-chemical properties. In this work, cobalt ferrite (CFNPs) and iron oxide nanoparticles (IONPs) were synthesized using the thermal decomposition method and then functionalized with polyacrylic acid (PAA) for aqueous dispersion. Associated techniques, namely TEM, FESEM, DLS, XRD, and VSM, were used to characterize the synthesized nanoparticles. We also investigated the light-induced and magnetic-field-induced hyperthermia properties of the PAA-functionalized MNPs. It was found that the PAA-CFNPs show a high specific absorption rate (SAR) compared with the PAA-IONPs. Since blood plasma is essential for the delivery and targeting of drugs, studying biological interactions is crucial for effective therapeutic use. Therefore, we performed physical and in silico studies to probe into the mechanistic interaction of CFNPs and IONPs with human hemoglobin. From these studies, we inferred the successful binding between the nanoparticles and protein. Preliminary in vitro cytocompatibility and photothermal toxicity studies in breast cancer (MCF-7) cells treated with the nanoparticles revealed a low dark toxicity and significant laser-induced photothermal toxicity.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Compostos Férricos/química , Nanopartículas Magnéticas de Óxido de Ferro , Hemoglobinas
12.
Nanomedicine (Lond) ; 18(8): 679-694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37264976

RESUMO

Background: Reactive oxygen species (ROS) are powerful weapons for various anticancer therapies. However, high glutathione (GSH) levels in cancer cells can significantly reduce the efficacy of such therapies. Methods: In this study, pH-responsive fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles were synthesized for ROS-mediated combination therapy. Results: Upon blue light activation, fluorescein displayed a high singlet oxygen photogeneration ability for photodynamic therapy. Concurrently, accumulated Zn2+ from degraded zeolitic imidazolate framework-8 stimulated simultaneous ROS generation and GSH depletion, thereby successfully inducing chemodynamic therapy. This triggered a cascade of photo-physical and chemical processes culminating in the localized generation of ROS, ultimately breaking the intracellular redox equilibrium. Conclusion: This nanoformulation can potentially be used for light-activated ROS-mediated therapy for the management of superficial tumors.


Highly reactive molecules called reactive oxygen species (ROS) are known to be present in excess in cancer cells. As a result, cancer cells are more susceptible to death by any further rise in levels of these species. In the current study, fluorescein-encapsulated zeolitic imidazolate nanoparticles were prepared for blue light-activated ROS-enhancing combination therapy. The nanoparticles displayed significant toxicity against a breast cancer cell line and simultaneously induced glutathione depletion, an antioxidant known to reduce the efficacy of various cancer therapies. Thus, this study reveals the potential of fluorescein-encapsulated zeolitic imidazolate nanoparticles for light-activated ROS-mediated therapy for the treatment of superficial tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Glutationa/metabolismo , Fluoresceínas/uso terapêutico , Linhagem Celular Tumoral , Peróxido de Hidrogênio/uso terapêutico , Microambiente Tumoral
13.
Artigo em Inglês | MEDLINE | ID: mdl-37899589

RESUMO

The increasing burden of cutaneous wound infections with drug-resistant bacteria underlines the dire need for novel treatment approaches. Here, we report the preparation steps, characterization, and antibacterial efficacy of novel chitosan-coated Prussian blue nanoparticles loaded with the photosensitizer fluorescein isothiocyanate-dextran (CHPB-FD). With excellent photothermal and photodynamic properties, CHPB-FD nanoparticles can effectively eradicate both Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa in vitro and in vivo. The antibacterial efficacy of CHPB-FD nanophotonic particles further increases in the presence of white light. Using a bacteria-infected cutaneous wound rat model, we demonstrate that CHPB-FD particles upregulate genes involved in tissue remodeling, promote collagen deposition, reduce unwanted inflammation, and enhance healing. The light-responsive CHPB-FD nanophotonic particles can, therefore, be potentially used as an economical and safe alternative to antibiotics for effectively decontaminating skin wounds and for disinfecting biomedical equipment and surfaces in hospitals and other places.

14.
Immunol Invest ; 41(4): 337-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21864113

RESUMO

Inhibition of Matrix metalloproteinase-9 (MMP-9) activity using delivery of short interfering RNA (siRNA) molecules to brain microvascular endothelial cells (BMVECs) that constitute the BBB may have a significant impact on reducing the BBB permeability. Gold nano rods (GNRs) can electrostatically bind with MMP-9 siRNA to form a nanoplex and the uptake of this nanoplex by BMVEC cells can result in suppression of MMP-9 expression. The current study explores if this GNR-MMP-9 siRNA nanoplex gene silencing modulates the expression of tight junction (TJ) proteins in the BMVEC. The endothelial TJ's of the BBB play a critical role in controlling cellular traffic into the central nervous system. We hypothesize that silencing of the MMP-9 gene expression in BMVEC will increase the expression of TJ proteins thereby decrease endothelial permeability. Our results showed a significant increase in the gene and protein expression of TJ proteins: ZO-1, Occludin and Claudin-5 in BMVEC cells that were transfected with the GNRs-siRNA-MMP-9 nanoplex suggesting that BBB disruption, which results from loss of TJ function due to MMP-9 activation during neuroinflammation can be prevented by silencing MMP-9 expression.


Assuntos
Encéfalo/metabolismo , Endotélio Vascular/metabolismo , Inibidores de Metaloproteinases de Matriz , Nanotubos , RNA Interferente Pequeno/metabolismo , Sobrevivência Celular , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Ativação Enzimática , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Microvasos/citologia , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , RNA Interferente Pequeno/química , Eletricidade Estática , Junções Íntimas/genética , Junções Íntimas/metabolismo , Transfecção
15.
Proc Natl Acad Sci U S A ; 106(14): 5546-50, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307583

RESUMO

Drug abuse is a worldwide health concern in which addiction involves activation of the dopaminergic signaling pathway in the brain. Here, we introduce a nanotechnology approach that utilizes gold nanorod-DARPP-32 siRNA complexes (nanoplexes) that target this dopaminergic signaling pathway in the brain. The shift in the localized longitudinal plasmon resonance peak of gold nanorods (GNRs) was used to show their interaction with siRNA. Plasmonic enhanced dark field imaging was used to visualize the uptake of these nanoplexes in dopaminergic neurons in vitro. Gene silencing of the nanoplexes in these cells was evidenced by the reduction in the expression of key proteins (DARPP-32, ERK, and PP-1) belonging to this pathway, with no observed cytotoxicity. Moreover, these nanoplexes were shown to transmigrate across an in vitro model of the blood-brain barrier (BBB). Therefore, these nanoplexes appear to be suited for brain-specific delivery of appropriate siRNA for therapy of drug addiction and other brain diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ouro , Nanotubos , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Transtornos Relacionados ao Uso de Substâncias/terapia , Barreira Hematoencefálica , Dopamina , Fosfoproteína 32 Regulada por cAMP e Dopamina/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inativação Gênica , Humanos , Nanotecnologia/métodos , RNA Interferente Pequeno/farmacologia
16.
ACS Omega ; 7(34): 29840-29849, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061706

RESUMO

Detection of Sn2+ ions in environmental and biological samples is essential owing to the toxicological risk posed by excess use tin worldwide. Herein, we have designed a nanoprobe involving upconversion nanophosphors linked with a rhodamine-based fluorophore, which is selectively sensitive to the presence of Sn2+ ions. Upon excitation with near-infrared (NIR) light, the green emission of the nanophosphor is reabsorbed by the fluorophore with an efficiency that varies directly with the concentration of the Sn2+ ions. We have explored this NIR-excited fluorescence resonance energy transfer (FRET) process for the quantitative and ratiometric detection of Sn2+ ions in an aqueous phase. We have observed an excellent linear correlation between the ratiometric emission signal variation and the Sn2+ ion concentration in the lower micromolar range. The detection limit of Sn2+ ions observed using our FRET-based nanoprobe is about 10 times lower than that observed using other colorimetric or fluorescence-based techniques. Due to the minimal autofluorescence and great penetration depth of NIR light, this method is ideally suited for the selective and ultrasensitive detection of Sn2+ ions in complex biological or environmental samples.

17.
Sci Rep ; 12(1): 10331, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725759

RESUMO

Numerous studies have shown that nanosized zeolitic imidazolate framework particles (ZIF-8 NPs) serve as promising vehicles for pH-responsive drug delivery. An understanding of their interaction with serum proteins present in physiological systems will thus be of critical importance. In this work, monodisperse ZIF-8 NPs with an average size of 60 nm were synthesized at room temperature and characterized for their various physicochemical properties. Bovine serum albumin (BSA) was used as model serum protein for various interaction studies with ZIF-8 NPs. Spectroscopic techniques such as UV-visible and fluorescence spectroscopy indicated the formation of a ground-state complex with a binding constant of the order 103 M-1 and a single binding site. Steady-state and time-resolved fluorescence spectroscopy confirmed the mechanism of quenching to be static. Conformational changes in the secondary structure of BSA were observed using CD and FT-IR spectroscopies. Binding sites were explored using molecular docking studies.


Assuntos
Nanopartículas , Soroalbumina Bovina , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
18.
Biomedicines ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740402

RESUMO

The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such 'nanozymes' is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal-organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review.

19.
Sci Rep ; 12(1): 19216, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357414

RESUMO

A standard experimental setup for Inelastic Electron Tunneling Spectroscopy (IETS) performs the measurement of the second derivative of the current with respect to the voltage ([Formula: see text]) using a small AC signal and a lock-in based second harmonic detection. This avoids noise arising from direct differentiation of the current-voltage characteristics (I-V) by standard numerical methods. Here we demonstrate a noise-filtering algorithm based on Tikhonov Regularization to obtain IET spectra (i.e. [Formula: see text] vs. V) from measured DC I-V curves. This leads to a simple and effective numerical method for IETS extraction. We apply the algorithm to I-V data from a molecular junction and a metal-insulator-semiconductor tunneling device, demonstrating that the computed first/second derivatives have a workable match with those obtained from our lock-in measurements; the computed IET spectral peaks also correlate well with reported experimental ones. Finally, we present a scheme for automated tuning of the algorithm parameters well-suited for the use of this numerical protocol in real applications.

20.
ACS Nano ; 16(4): 5036-5061, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35294165

RESUMO

Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.


Assuntos
Nanopartículas , Neoplasias , Medicina Nuclear , Humanos , Nanomedicina/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA