Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 617(7962): 835-841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198487

RESUMO

Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.


Assuntos
Repetição Terminal Longa de HIV , HIV-1 , Conformação de Ácido Nucleico , RNA Viral , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Repetição Terminal Longa de HIV/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , HIV-1/metabolismo
3.
J Am Chem Soc ; 145(42): 22964-22978, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37831584

RESUMO

Knowing the 3D structures formed by the various conformations populating the RNA free-energy landscape, their relative abundance, and kinetic interconversion rates is required to obtain a quantitative and predictive understanding of how RNAs fold and function at the atomic level. While methods integrating ensemble-averaged experimental data with computational modeling are helping define the most abundant conformations in RNA ensembles, elucidating their kinetic rates of interconversion and determining the 3D structures of sparsely populated short-lived RNA excited conformational states (ESs) remains challenging. Here, we developed an approach integrating Rosetta-FARFAR RNA structure prediction with NMR residual dipolar couplings and relaxation dispersion that simultaneously determines the 3D structures formed by the ground-state (GS) and ES subensembles, their relative abundance, and kinetic rates of interconversion. The approach is demonstrated on HIV-1 TAR, whose six-nucleotide apical loop was previously shown to form a sparsely populated (∼13%) short-lived (lifetime ∼ 45 µs) ES. In the GS, the apical loop forms a broad distribution of open conformations interconverting on the pico-to-nanosecond time scale. Most residues are unpaired and preorganized to bind the Tat-superelongation protein complex. The apical loop zips up in the ES, forming a narrow distribution of closed conformations, which sequester critical residues required for protein recognition. Our work introduces an approach for determining the 3D ensemble models formed by sparsely populated RNA conformational states, provides a rare atomic view of an RNA ES, and kinetically resolves the atomic 3D structures of RNA conformational substates, interchanging on time scales spanning 6 orders of magnitude, from picoseconds to microseconds.


Assuntos
Proteínas , RNA , RNA/química , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Proteínas/genética
4.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050664

RESUMO

Indoor mobile robot (IMR) motion control for e-SLAM techniques with limited sensors, i.e., only LiDAR, is proposed in this research. The path was initially generated from simple floor plans constructed by the IMR exploration. The path planning starts from the vertices which can be traveled through, proceeds to the velocity planning on both cornering and linear motion, and reaches the interpolated discrete points joining the vertices. The IMR recognizes its location and environment gradually from the LiDAR data. The study imposes the upper rings of the LiDAR image to perform localization while the lower rings are for obstacle detection. The IMR must travel through a series of featured vertices and perform the path planning further generating an integrated LiDAR image. A considerable challenge is that the LiDAR data are the only source to be compared with the path planned according to the floor map. Certain changes still need to be adapted into, for example, the distance precision with relevance to the floor map and the IMR deviation in order to avoid obstacles on the path. The LiDAR setting and IMR speed regulation account for a critical issue. The study contributed to integrating a step-by-step procedure of implementing path planning and motion control using solely the LiDAR data along with the integration of various pieces of software. The control strategy is thus improved while experimenting with various proportional control gains for position, orientation, and velocity of the LiDAR in the IMR.

5.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214588

RESUMO

This paper attempts to uncover one possible method for the IMR (indoor mobile robot) to perform indoor exploration associated with SLAM (simultaneous localization and mapping) using LiDAR. Specifically, the IMR is required to construct a map when it has landed on an unexplored floor of a building. We had implemented the e-SLAM (exploration-based SLAM) using the coordinate transformation and the navigation prediction techniques to achieve that purpose in the engineering school building which consists of many 100-m2 labs, corridors, elevator waiting space and the lobby. We first derive the LiDAR mesh for the orthogonal walls and filter out the static furniture and dynamic humans in the same space as the IMR. Then, we define the LiDAR pose frame including the translation and rotation from the orthogonal walls. According to the MSC (most significant corner) obtained from the intersection of the orthogonal walls, we calculate the displacement of the IMR. The orientation of the IMR is calculated from the alignment of orthogonal walls in the consecutive LiDAR pose frames, which is also assisted by the LQE (linear quadratic estimation) method. All the computation can be done in a single processor machine in real-time. The e-SLAM technique leads to a potential for the in-house service robot to start operation without having pre-scan LiDAR maps, which can save the installation time of the service robot. In this study, we use only the LiDAR and compared our result with the IMU to verify the consistency between the two navigation sensors in the experiments. The scenario of the experiment consists of rooms, corridors, elevators, and the lobby, which is common to most office buildings.


Assuntos
Robótica , Algoritmos , Humanos , Robótica/métodos
6.
Phys Chem Chem Phys ; 20(34): 21934-21948, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30088497

RESUMO

Metal ions are crucial for folding and function of noncoding RNAs. The fact that RNAs have very specific metal ion binding motifs further implies that contribution of metal ions (like Mg2+) in RNA's folding is not limited to simple compensation of electrostatic repulsions. Rather, their binding to RNA is driven by very specific contextual requirements. Elucidation of such factors is necessary for a comprehensive understanding of the sequence-structure-function paradigm in RNA. In this work, we have studied the consequences of Mg2+ binding on the geometry and stability of different noncanonical base pairs that shape up the complex structural landscape of RNA. Our results show that majority of the Mg2+ bound nucleobases are also part of a base pair. Interestingly, such base pairs belong only to a specific set of base pairing geometries. Out of them, we are able to identify 14 unique cases for which the native base pairing geometries are unstable under gas phase geometry optimization carried out in the absence of Mg2+ binding. Our density functional theory based calculations, performed using dispersion corrected M05-2X functional, suggest that, depending on its mode of binding, Mg2+ can stabilize and even fine tune a number of such base pairing geometries. These findings not only provide insights into how metal ions modulate the structure and dynamics of RNA molecules, they also provide a basis for improving the RNA structure prediction algorithms.


Assuntos
Magnésio/metabolismo , RNA/metabolismo , Pareamento de Bases , Ligação de Hidrogênio , Íons/química , Magnésio/química , Conformação de Ácido Nucleico , Teoria Quântica , RNA/química , Estabilidade de RNA
7.
Biophys J ; 113(2): 277-289, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28506525

RESUMO

Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg2+, accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg2+. This, in conjunction with recently raised doubts regarding some of the Mg2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg2+ binding modes for this basepair. Our detailed investigation of Mg2+-bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg2+ ions in shaping RNA structure, folding and function.


Assuntos
Pareamento de Bases/fisiologia , Citosina/metabolismo , Guanina/metabolismo , Magnésio/metabolismo , Dobramento de RNA/fisiologia , RNA/metabolismo , Bactérias , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Citosina/química , Guanina/química , Ligação de Hidrogênio , Magnésio/química , Modelos Genéticos , Modelos Moleculares , RNA/química , Estabilidade de RNA/fisiologia , Água/química
8.
Nat Commun ; 14(1): 8432, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114465

RESUMO

Sparse and short-lived excited RNA conformational states are essential players in cell physiology, disease, and therapeutic development, yet determining their 3D structures remains challenging. Combining mutagenesis, NMR spectroscopy, and computational modeling, we determined the 3D structural ensemble formed by a short-lived (lifetime ~2.1 ms) lowly-populated (~0.4%) conformational state in HIV-1 TAR RNA. Through a strand register shift, the excited conformational state completely remodels the 3D structure of the ground state (RMSD from the ground state = 7.2 ± 0.9 Å), forming a surprisingly more ordered conformational ensemble rich in non-canonical mismatches. The structure impedes the formation of the motifs recognized by Tat and the super elongation complex, explaining why this alternative TAR conformation cannot activate HIV-1 transcription. The ability to determine the 3D structures of fleeting RNA states using the presented methodology holds great promise for our understanding of RNA biology, disease mechanisms, and the development of RNA-targeting therapeutics.


Assuntos
RNA Viral , RNA Viral/genética , RNA Viral/química , Conformação de Ácido Nucleico , Espectroscopia de Ressonância Magnética , Mutagênese
9.
Nat Commun ; 11(1): 5531, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139729

RESUMO

Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a conformation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently supported by comparisons to quantum-mechanical calculations of NMR chemical shifts, comparison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine.


Assuntos
Quimioinformática/métodos , HIV-1/química , Dobramento de RNA , RNA Viral/ultraestrutura , Repetição Terminal Longa de HIV , HIV-1/genética , HIV-1/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , RNA Viral/química , RNA Viral/genética
10.
ACS Omega ; 4(1): 699-709, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30775644

RESUMO

Charged nucleobases have been found to occur in several known RNA molecules and are considered essential for their structure and function. The mechanism of their involvement is however not yet fully understood. Revelation of the role of N7-protonated guanine, in modulating the geometry and stability of noncanonical base pairs formed through its unprotonated edges [Watson-Crick (WC) and sugar], has triggered the need to evaluate the feasibility of similar roles of other protonated nucleobases [Halder et al., Phys Chem Chem Phys, 2015, 17, 26249]. In this context, N3 protonation of guanine makes an interesting case as its influence on the charge distribution of the WC edge is similar to that of N7 protonation, though its thermodynamic cost of protonation is significantly higher. In this work, we have carried out structural bioinformatics analyses and quantum mechanics-based calculations to show that N3 protonation of guanine may take place in a cellular environment, at least in the G:C W:W Trans and G:G W:H Cis base pairs. Our results provide a reasonable starting point for future investigations in order to address the larger mechanistic question.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA