Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 819-823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778232

RESUMO

Lanthanide rare-earth metals are ubiquitous in modern technologies1-5, but we know little about chemistry of the 61st element, promethium (Pm)6, a lanthanide that is highly radioactive and inaccessible. Despite its importance7,8, Pm has been conspicuously absent from the experimental studies of lanthanides, impeding our full comprehension of the so-called lanthanide contraction phenomenon: a fundamental aspect of the periodic table that is quoted in general chemistry textbooks. Here we demonstrate a stable chelation of the 147Pm radionuclide (half-life of 2.62 years) in aqueous solution by the newly synthesized organic diglycolamide ligand. The resulting homoleptic PmIII complex is studied using synchrotron X-ray absorption spectroscopy and quantum chemical calculations to establish the coordination structure and a bond distance of promethium. These fundamental insights allow a complete structural investigation of a full set of isostructural lanthanide complexes, ultimately capturing the lanthanide contraction in solution solely on the basis of experimental observations. Our results show accelerated shortening of bonds at the beginning of the lanthanide series, which can be correlated to the separation trends shown by diglycolamides9-11. The characterization of the radioactive PmIII complex in an aqueous environment deepens our understanding of intra-lanthanide behaviour12-15 and the chemistry and separation of the f-block elements16.

2.
J Am Chem Soc ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042490

RESUMO

Uranium is arguably the most essential element in the actinide series, serving as a crucial component of nuclear fuels. While U is recognized for engaging the 5f orbitals in chemical bonds under normal conditions, little is known about its coordination chemistry and the nature of bonding interactions at extreme conditions of high temperature. Here we report experimental and computational evidence for the shrinkage of the average U-ligand distance in UCl3 upon the solid-to-molten phase transition, leading to the formation of a significant fraction of short, transient U-Cl bonds with the enhanced involvement of U 5f valence orbitals. These findings reveal that extreme temperatures create an unusual heterogeneous bonding environment around U(III) with distinct inner- and outer-coordination subshells.

3.
Langmuir ; 40(28): 14311-14320, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958522

RESUMO

Amino acids make up a promising family of molecules capable of direct air capture (DAC) of CO2 from the atmosphere. Under alkaline conditions, CO2 reacts with the anionic form of an amino acid to produce carbamates and deactivated zwitterionic amino acids. The presence of the various species of amino acids and reactive intermediates can have a significant effect on DAC chemistry, the role of which is poorly understood. In this study, all-atom molecular dynamics (MD) based computational simulations and vibrational sum frequency generation (vSFG) spectroscopy studies were conducted to understand the role of competitive interactions at the air-aqueous interface in the context of DAC. We find that the presence of potassium bicarbonate ions, in combination with the anionic and zwitterionic forms of amino acids, induces concentration and charge gradients at the interface, generating a layered molecular arrangement that changes under pre- and post-DAC conditions. In parallel, an enhancement in the surface activity of both anionic and zwitterionic forms of amino acids is observed, which is attributed to enhanced interfacial stability and favorable intermolecular interactions between the adsorbed amino acids in their anionic and zwitterionic forms. The collective influence of these competitive interactions, along with the resulting interfacial heterogeneity, may in turn affect subsequent capture reactions and associated rates. These effects underscore the need to consider dynamic changes in interfacial chemical makeup to enhance DAC efficiency and to develop successful negative emission and storage technologies.

4.
J Am Chem Soc ; 144(47): 21751-21762, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36379028

RESUMO

Lanthanides are important fission products in molten salt reactors, and understanding their structure and that of their mixtures is relevant to many scientific and technological problems including the recovery and separation of rare earth elements using molten salt electrolysis. The literature on molten salts and specifically on LaCl3 and LaCl3-NaCl mixtures is often fragmented, with different experiments and simulations coinciding in their explanation for certain structural results but contradicting or questioning for others. Given the very practical importance that actinide and lanthanide salts have for energy applications, it is imperative to arrive at a clear unified picture of their local and intermediate-range structure in the neat molten state and when mixed with other salts. This article aims to unequivocally answer a set of specific questions: is it correct to think of long-lived octahedral coordination structures for La3+? What is the nature as a function of temperature of networks and intermediate-range order particularly upon dilution of the trivalent ion salt? Is the so-called scattering first sharp diffraction peak (FSDP) for neat LaCl3 truly indicative of intermediate-range order? If so, why is there a new lower-q peak when mixed with NaCl? Are X-ray scattering and Raman spectroscopy results fully consistent and easily described by simulation results? We will show that answers to these questions require that we abandon the idea of a most prominent coordination state for M3+ ions and instead think of multiple competing coordination states in exchange due to significant thermal energy in the molten state.


Assuntos
Elementos da Série dos Lantanídeos , Sais , Sais/química , Cloreto de Sódio , Íons/química , Temperatura
5.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598850

RESUMO

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Assuntos
Modelos Químicos , Proteínas/química , Análise Espectral/métodos , Humanos , Análise Espectral Raman , Eletricidade Estática , Vibração
6.
J Am Chem Soc ; 143(37): 15298-15308, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499512

RESUMO

To examine ion solvation, exchange, and speciation for minority components in molten salts (MS) typically found as corrosion products, we propose a multimodal approach combining extended X-ray absorption fine structure (EXAFS) spectroscopy, optical spectroscopy, ab initio molecular dynamics (AIMD) simulations, and rate theory of ion exchange. Going beyond conventional EXAFS analysis, our method can accurately quantify populations of different coordination states of ions with highly disordered coordination environments via linear combination fitting of the EXAFS spectra of these coordination states computed from AIMD to the experimental EXAFS spectrum. In a case study of dilute Ni(II) dissolved in the ZnCl2+KCl melts, our method reveals heterogeneous distributions of coordination states of Ni(II) that are sensitive to variations in temperature and melt composition. These results are fully explained by the difference in the chloride exchange dynamics at varied temperatures and melt compositions. This insight will enable a better understanding and control of ion solubility and transport in MS.

7.
Phys Chem Chem Phys ; 22(15): 7719-7727, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32215419

RESUMO

Hydration of surface ions gives rise to structural heterogeneity and variable exchange kinetics of water at complex mineral-water interfaces. Here, we employ ab initio molecular dynamics (AIMD) simulations and water adsorption calorimetry to examine the aqueous interfaces of xenotime, a phosphate mineral that contains predominantly Y3+ and heavy rare earth elements. Consistent with natural crystal morphology, xenotime is predicted to have a tetragonal prismatic shape, dominated by the {100} surface. Hydration of this surface induces multilayer interfacial water structures with distinct OH orientations, which agrees with recent crystal truncation rod measurements. The exchange kinetics between two adjacent water layers exhibits a wide range of underlying timescales (5-180 picoseconds), dictated by ion-water electrostatics. Adsorption of a bidentate hydroxamate ligand reveals that {100} xenotime surface can only accommodate monodentate coordination with water exchange kinetics strongly depending on specific ligand orientation, prompting us to reconsider traditional strategies for selective separation of rare-earth minerals.

8.
Phys Chem Chem Phys ; 22(40): 22900-22917, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32845262

RESUMO

Molten salts are of great interest as alternative solvents, electrolytes, and heat transfer fluids in many emerging technologies. The macroscopic properties of molten salts are ultimately controlled by their structure and ion dynamics at the microscopic level and it is therefore vital to develop an understanding of these at the atomistic scale. Herein, we present high-energy X-ray scattering experiments combined with classical and ab initio molecular dynamics simulations to elucidate structural and dynamical correlations across the family of alkali-chlorides. Computed structure functions and transport properties are in reasonably good agreement with experiments providing confidence in our analysis of microscopic properties based on simulations. For these systems, we also survey different rate theory models of anion exchange dynamics in order to gain a more sophisticated understanding of the short-time correlations that are likely to influence transport properties such as conductivity. The anion exchange process occurs on the picoseconds time scale at 1100 K and the rate increases in the order KCl < NaCl < LiCl, which is in stark contrast to the ion pair dissociation trend in aqueous solutions. Consistent with the trend we observe for conductivity, the cationic size/mass, as well as other factors specific to each type of rate theory, appear to play important roles in the anion exchange rate trend.

9.
J Chem Phys ; 153(21): 214502, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291915

RESUMO

Results from extensive molecular dynamics simulations of molten LiCl, NaCl, KCl, and RbCl over a wide range of temperatures are reported. Comparison is made between the "Polarizable Ion Model" (PIM) and the non-polarizable "Rigid Ion Model" (RIM). Densities, self-diffusivities, shear viscosities, ionic conductivities, and thermal conductivities are computed and compared with experimental data. In addition, radial distribution functions are computed from ab initio molecular dynamics simulations and compared with the two sets of classical simulations as well as experimental data. The two classical models perform reasonably well at capturing structural and dynamic properties of the four molten alkali chlorides, both qualitatively and often quantitatively. With the singular exception of liquid density, for which the PIM is more accurate than the RIM, there are few clear trends to suggest that one model is more accurate than the other for the four alkali halide systems studied here.

10.
J Indian Prosthodont Soc ; 20(3): 269-277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223696

RESUMO

AIM: The aim of the study is to acquire evidence for the choice of occlusion with anatomic/modified anatomic teeth in complete denture prosthesis. SETTINGS AND DESIGN: Systematic review following PRISMA guidelines. MATERIALS AND METHODS: The study reviewed original articles on various occlusal schemes bilateral balance occlusion (BBO), lingual occlusion (LO), Canine guided occlusion (CG), posterior group function occlusion (PGFO) have been applied to the complete dentures and were analyzed for the objective or subjective or both evaluations. The data were collected in standard format with the needed information such as year of publication, type of study, occlusal schemes compared, test methodology used, sample size for experiment and control, assessment of retention, stability, and other factors which determine the quality of life and period of follow-up. The risk of bias was calculated using tools RoB2.0 and robvis. At all stages, the inclusion and exclusion of studies were discussed among the reviewers. STATISTICAL ANALYSIS USED: Due to the heterogeneity in the data of the included studies no statistical analysis was used. RESULTS: Of the 1896 articles screened only 17 studies were included in the systematic review. These were discussed amongst the reviewers regarding the various occlusion schemes used. The subjective and objective criteria used in the studies was tabulated separately. They were then analyzed for the risk of bias using the robvis 2 tool. CONCLUSION: No scheme is more superior to the other with the anatomic tooth forms. The use of alternative unbalanced schemes produces a similar satisfactory clinical outcome. The ridge classification also has a significant role to play in the preference for an occlusal scheme.

11.
Chemistry ; 25(10): 2545-2555, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444030

RESUMO

The thermodynamic influence of a pre-organized N-donor group on the coordination of trivalent actinides and lanthanides by an aqueous aminopolycarboxylate complexant has been investigated. The synthesized reagent, N-2-methylpicolinate-ethylenediamine-N,N',N'-triacetic acid (EDTA-Mpic), resembles ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) with a single acetate pendant arm replaced by a 6-carboxypyridin-2-ylmethyl group. The rigid N-donor picolinate functionality has a profound impact on ligand protonation and trivalent f element complexation equilibria, as demonstrated by potentiometric, spectroscopic, and liquid/liquid metal-partitioning studies as well as by molecular dynamics calculations. Relative to diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), the ability to preferentially bind trivalent actinides over trivalent lanthanides was moderately lowered due to the presence of the N-(6-carboxypyridin-2-ylmethyl) substituent. The structural modification substantially amplifies the total ligand acidity of EDTA-Mpic. As a result the complexant sustains the metal complexation and efficient An3+ /Ln3+ differentiation in aqueous mixtures of unprecedented acidity for this class of reagents.

12.
Inorg Chem ; 57(3): 1373-1385, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303253

RESUMO

The novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am3+, Cm3+, and Ln3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL(aq) complexes at the same aqueous acidity. The denticity change observed for Eu3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL(aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am3+, Cm3+) and trivalent lanthanide chelates (La3+-Lu3+) are observed in liquid-liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by adding a fluorine onto the pyridine group. The comparative characterization of N-(3-fluoro-2-pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-3-F-PyM) showed subdued 4f/5f differentiation due to the presence of this electron-withdrawing group.

14.
J Am Chem Soc ; 138(8): 2472-5, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26875689

RESUMO

Water-mediated ion transport through functional nanoporous materials depends on the dynamics of water confined within a given nanostructured morphology. Here, we investigate H-bonding dynamics of interfacial water within a "normal" (Type I) lyotropic gyroid phase formed by a gemini dicarboxylate surfactant self-assembly using a combination of 2DIR spectroscopy and molecular dynamics simulations. Experiments and simulations demonstrate that water dynamics in the normal gyroid phase is 1 order of magnitude slower than that in bulk water, due to specific interactions between water, the ionic surfactant headgroups, and counterions. Yet, the dynamics of water in the normal gyroid phase are faster than those of water confined in a reverse spherical micelle of a sulfonate surfactant, given that the water pool in the reverse micelle and the water pore in the gyroid phase have roughly the same diameters. This difference in confined water dynamics likely arises from the significantly reduced curvature-induced frustration at the convex interfaces of the normal gyroid, as compared to the concave interfaces of a reverse spherical micelle. These detailed insights into confined water dynamics may guide the future design of artificial membranes that rapidly transport protons and other ions.

16.
Chem Sci ; 15(9): 3116-3129, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425531

RESUMO

In the dynamic environment of multi-component reactive molten salts, speciation unfolds as a complex process, involving multiple competing reaction pathways that are likely to face free energy barriers before reaching the reaction equilibria. Herein, we unravel intricate speciation in the AlCl3-KCl melt compositions with rate theory and ab initio molecular dynamics simulations. We find that the compositions with 100 and 50 mol% AlCl3 exclusively comprise neutral Al2Cl6 dimers and charged AlCl4- monomers, respectively. In intermediate AlCl3-KCl compositions, the chemical speciation proves to be a very complex process, requiring over 0.5 nanosecond to reach an equilibrium distribution of multiple species. It is a consequence of the competitive formation and dissociation of additional species, including charged Al dimers, trimers, and tetramers. Here, the species formation occurs through ion exchange events, which we explain by computing free energy landscapes and employing a Marcus-like rate theory. We show that both interspecies and intraspecies ion exchanges are probable and are dictated by the local structural reorganization reflected in the change of local coulombic fields. The species distributions are validated by comparing computed Raman spectra and neutron structure factors with the available experimental data. We find an excellent simulation-experiment agreement in both cases. Nevertheless, Raman spectroscopy turns out to be particularly advantageous for distinguishing between unique species distributions because of the distinct vibrational signatures of different species. The mechanistic insight into reaction dynamics gained in this study will be essential for the advancement of molten salts as reactive media in high-temperature energy applications.

17.
ACS Appl Mater Interfaces ; 16(28): 36878-36891, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958640

RESUMO

Polyacrylonitrile (PAN) is an important commercial polymer, bearing atactic stereochemistry resulting from nonselective radical polymerization. As such, an accurate, fundamental understanding of governing interactions among PAN molecular units is indispensable for advancing the design principles of final products at reduced processability costs. While ab initio molecular dynamics (AIMD) simulations can provide the necessary accuracy for treating key interactions in polar polymers, such as dipole-dipole interactions and hydrogen bonding, and analyzing their influence on the molecular orientation, their implementation is limited to small molecules only. Herein, we show that the neural network interatomic potentials (NNIPs) that are trained on the small-scale AIMD data (acquired for oligomers) can be efficiently employed to examine the structures and properties at large scales (polymers). NNIP provides critical insight into intra- and interchain hydrogen-bonding and dipolar correlations and accurately predicts the amorphous bulk PAN structure validated by modeling the experimental X-ray structure factor. Furthermore, the NNIP-predicted PAN properties, such as density and elastic modulus, are in good agreement with their experimental values. Overall, the trend in the elastic modulus is found to correlate strongly with the PAN structural orientations encoded in the Hermans orientation factor. This study enables the ability to predict the structure-property relations for PAN and analogues with sustainable ab initio accuracy across scales.

18.
J Phys Chem B ; 128(16): 3972-3980, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38624173

RESUMO

Complex molten chloride salt mixtures of uranium, magnesium, and sodium are top candidates for promising nuclear energy technologies to produce electricity based on molten salt reactors. From a local structural perspective, LaCl3 is similar to UCl3 and hence a good proxy to study these complex salt mixtures. As fission products, lanthanide salts and their mixtures are also very important in their own right. This article describes from an experimental and theory perspective how very different the structural roles of MgCl2 and NaCl are in mixtures with LaCl3. We find that, whereas MgCl2 becomes an integral part of multivalent ionic networks, NaCl separates them. In a recent article (J. Am. Chem. Soc. 2022, 144, 21751-21762) we have called the disruptive behavior of NaCl "the spacer salt effect". Because of the heterogeneous nature of these salt mixtures, there are multiple structural motifs in the melt, each with its particular free energetics. Our work identifies and quantifies these; it also elucidates the mechanisms through which Cl- ions exchange between Mg2+-rich and La3+-rich environments.

19.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411063

RESUMO

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

20.
J Indian Prosthodont Soc ; 23(2): 203-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37102548

RESUMO

Background: Interdisciplinary referrals for dental examination in hospital setups are common before radiotherapy, kidney transplants, or magnetic resonance imaging (MRI). The patients who walk in could be random patients with metallic or porcelain-fused-to-metal prostheses done elsewhere but might require an opinion before the MRI. This leaves quite a responsibility on the consulting dentist to green signal the procedure. There is a lack of evidence in the literature, to confirm the absence of any untoward consequence during such MRI, which might leave the dentist in dilemma. Dental materials' magnetic behavior raises concern regarding whether they are 100% nonferromagnetic; furthermore, the examining dentist might be unaware of the metal used (Co-Cr, Ni-Cr, or trace elements). Clinicians may also come across full-mouth rehabilitated patients with multiple crown-bridge prostheses or metallic superstructure for implant prostheses. Research in the area leaves many unanswered questions because most studies have evaluated artifacts during MRI and are in vitro. Titanium is considered to be safe due to its paramagnetic behavior, whereas the literature does not rule out the probability of dislodgment of other porcelain fused to metal (PFM) prostheses. Due to less reported literature there exists dilemma to ascertain MRI in these patients. An online Google Search, PubMed, and gray literature portray the ambiguity associated with metal and PFM crowns and their magnetic behavior during MRI. Most studies were associated with the artifacts caused during MRI and methods of reducing them under in vitro situations. The concern for dislodgment has also been expressed in a few reports. Technique: Certain steps of a pre-MRI checkup and an innovative technique have been discussed to assure patient safety during the MRI. Conclusion: The technique explained is inexpensive and a quick aid that can be executed before the investigation. Clinical and Research Implications: There is a need to study and understand the magnetic behavior of Co-Cr and Ni-Cr crowns in the presence of various MRI strengths.


Assuntos
Porcelana Dentária , Papel do Dentista , Humanos , Porcelana Dentária/química , Coroas , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA