Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149922

RESUMO

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Assuntos
Complemento C1s , Via Clássica do Complemento , Animais , Ovinos , Peptídeo Hidrolases , Complemento C1/metabolismo , Endopeptidases , Piridinas/farmacologia
2.
Proc Natl Acad Sci U S A ; 119(11): e2116787119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254892

RESUMO

SignificanceHematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches.


Assuntos
Ecdisona/metabolismo , Regulação da Expressão Gênica , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Reprodução/genética , Sítios de Ligação , Ecdisterona/metabolismo , Genes Reporter , Especificidade de Órgãos , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Esteroides/metabolismo , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 299(8): 104972, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380082

RESUMO

Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.


Assuntos
Proteínas de Bactérias , Borrelia , Proteínas Inativadoras do Complemento 1 , Doença de Lyme , Febre Recorrente , Humanos , Proteínas de Bactérias/química , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Febre Recorrente/imunologia , Febre Recorrente/microbiologia , Proteínas Inativadoras do Complemento 1/química , Domínios Proteicos , Cristalografia por Raios X
4.
Nature ; 563(7732): 501-507, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429615

RESUMO

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Assuntos
Aedes/genética , Infecções por Arbovirus/virologia , Arbovírus , Genoma de Inseto/genética , Genômica/normas , Controle de Insetos , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/isolamento & purificação , Variações do Número de Cópias de DNA/genética , Vírus da Dengue/isolamento & purificação , Feminino , Variação Genética/genética , Genética Populacional , Glutationa Transferase/genética , Resistência a Inseticidas/efeitos dos fármacos , Masculino , Anotação de Sequência Molecular , Família Multigênica/genética , Piretrinas/farmacologia , Padrões de Referência , Processos de Determinação Sexual/genética
5.
J Therm Biol ; 123: 103915, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981303

RESUMO

The liveliness of a human potentially depends on his/her smooth movability. To accomplish the work of daily life, the joints of the body need to be healthy. However, the occurrence of Rheumatoid arthritis and Osteoarthritis has a significant prevalence towards the immovability of humankind. Rheumatoid arthritis (RA) and Osteoarthritis (OA) mostly affect the joints of the hand and knee which result in lifelong pain, inability to climb, walk, etc. In the early stages, these diseases attack the synovial membrane and synovial fluid, and further it destroys the soft tissues and bone structure. By early diagnosis, we can start the treatment in the early stage which may cure these diseases with such extreme consequences. As per clinical studies of previous literature, it is observed that synovial fluid imbalance appears in the early stage of such diseases and Hyaluronic Acid (HA) concentration also decreases for that. Therefore, estimation of HA is a significant key to arthritis disease classification and grading. In this paper, we proposed a hybrid framework for classification of arthritic knee joints based on the analysis of the discontinuous appearances of the HA concentration using infrared imaging technology. To meet up the specific necessities, firstly we have proposed a modified K-Means clustering algorithm for extraction of the region of interest (ROI) i.e., the knee joint surface. Secondly, a mathematical formulation is proposed to calculate the concentration of HA from the segmented ROIs. This experimental process was implemented on the publicly available IR (Infrared) Knee Joint Dataset and for further evaluation of the novelty of mathematical formulation, we have extended the proposed work to the classification of healthy and arthritis affected knee joints depending on significant discriminative characteristics of the HA concentration with respect to the existing significant imaging features. Experimental results and analysis demonstrates that concentration of HA has the dominant potential for classifying healthy and arthritic knee joints using infrared holistic images. Our experimental analysis reveals that estimation and combination of the HA concentration features with conventional handcrafted and deep features increases the classification performance with an average accuracy of 91% and 97.22% respectively as compared to the each individual feature sets.

6.
Angew Chem Int Ed Engl ; 63(30): e202403950, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712851

RESUMO

Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.

7.
J Biol Chem ; 298(9): 102357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952760

RESUMO

Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating ß-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via ß-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin-CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs' mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4-cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab's targeting mechanism. From these insights, we generated a model for CpE's claudin-bound ß-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.


Assuntos
Claudinas , Enterotoxinas , Animais , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Epitopos/metabolismo , Humanos , Ligação Proteica
8.
J Cell Biochem ; 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37087733

RESUMO

Coordinated cochaperone interactions with Hsp90 and associated client proteins are crucial for a multitude of signaling pathways in normal physiology, as well as in disease settings. Research on the molecular mechanisms regulated by the Hsp90 multiprotein complexes has demonstrated increasingly diverse roles for cochaperones throughout Hsp90-regulated signaling pathways. Thus, the Hsp90-associated cochaperones have emerged as attractive therapeutic targets in a wide variety of disease settings. The tetratricopeptide repeat (TPR)-domain immunophilins FKBP51 and FKBP52 are of special interest among the Hsp90-associated cochaperones given their Hsp90 client protein specificity, ubiquitous expression across tissues, and their increasingly important roles in neuronal signaling, intracellular calcium release, peptide bond isomerization, viral replication, steroid hormone receptor function, and cell proliferation to name a few. This review summarizes the current knowledge of the structure and molecular functions of TPR-domain immunophilins FKBP51 and FKBP52, recent findings implicating these immunophilins in disease, and the therapeutic potential of targeting FKBP51 and FKBP52 for the treatment of disease.

9.
Chemistry ; 29(12): e202203428, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36445786

RESUMO

Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.

10.
Soft Matter ; 19(42): 8150-8156, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850235

RESUMO

We develop a framework to understand the mechanics of metamaterial sheets on curved surfaces. Here we have constructed a continuum elastic theory of mechanical metamaterials by introducing an auxiliary, scalar gauge-like field that absorbs the strain along the soft mode and projects out the stiff ones. We propose a general form of the elastic energy of a mechanism based metamaterial sheet and specialize to the cases of dilational metamaterials and shear metamaterials conforming to positively and negatively curved substrates in the Föppl-Von Kármán limit of small strains. We perform numerical simulations of these systems and obtain good agreement with our analytical predictions. This work provides a framework that can be easily extended to explore non-linear soft modes in metamaterial elasticity in future.

11.
Biochem Biophys Res Commun ; 608: 90-95, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35397428

RESUMO

Obesity is associated with low-grade chronic inflammation and has a remarkable role in the pathophysiology of metabolic complications. In triggering these inflammatory responses, the arachidonic acid (AA) cascade plays a key role. However, there is a lack of data on how supplementary AA would affect obesity, adipose tissue inflammation, and the AA cascade in obesity. This study aims to investigate how AA supplementation affects obesity, adipocyte morphology, inflammation, and AA cascade signaling. Male Swiss Albino mice were used in our experiment. The mice were fed high-fat diets to induce obesity, and these obese mice were treated with two different doses of AA for 3 weeks. A normal diet non-obese group and an untreated obese group were kept as controls. Bodyweight and daily food intake data were recorded during that period. After the treatment period, blood serum and white adipose tissue of the experimental mice were collected for colorimetric lipid profile tests, histology, and mRNA extraction. The ΔΔCT method was employed for calculating the relative mRNA expression of target genes. The findings of our study suggest that AA has no significant effects on body weight, visceral adiposity, adipose tissue morphology, and serum lipid profile. However, AA treatment has resulted in a significant down-regulation of pro-inflammatory markers as well as the COX pathway. Besides, up-regulation of 12/15-LOX has been observed, indicating the metabolism pathway of supplementary AA through the LOX pathway. Our findings indicate that AA treatment may not provide significant benefits in terms of body weight, visceral fat mass, or serum lipid profile. However, it has effectively alleviated obesity-induced adipocyte inflammation in high-fat diet-induced obese mice.


Assuntos
Adiposidade , Dieta Hiperlipídica , Adipócitos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , RNA Mensageiro/metabolismo
12.
Prostaglandins Other Lipid Mediat ; 162: 106664, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843503

RESUMO

The prevalence of obesity is increasing at an alarming rate and keeps on being one of the significant challenges of this century. Obesity promotes adipose tissue hypertrophy and causes the release of different pro-inflammatory cytokines, playing a significant role in the pathophysiology of metabolic syndrome. Aspirin is known as a potent anti-inflammatory drug, but its role in adipogenesis, adipocyte-specific inflammation, and metabolic syndrome is not well characterized. Thus, in this experiment, we aimed to determine the effect of low-dose aspirin on obesity, obesity-induced inflammation, and metabolic syndrome. High-fat diet-induced obese female mice (Swiss Albino) were used in our study. Mice were fed on a normal diet, a high-fat diet, and a low dose of aspirin (LDA) in the presence of a high-fat diet for 11 weeks. Body weight, lipid profile, adipose tissue size, and inflammatory status were analyzed after that period. The ∆∆CT method was used to calculate the relative mRNA expression of target genes. Treatment with a low dose of aspirin resulted in a significant reduction of body weight, visceral fat mass and serum total cholesterols, serum and adipose tissue triglycerides, and blood glucose levels in high-fat diet-induced obese mice compared to the untreated obese group. Consistent with these biochemical results, a significant reduction in mRNA expression of different genes like PPARγ, GLUT4, IL-6, TNFα, MCP-1, ICAM-I, and VCAM-I associated with adipogenesis and inflammation were noticed. Overall, current study findings indicate that low-dose aspirin reduces obesity, hyperlipidemia, adipocyte-specific inflammation, and metabolic syndrome in high-fat diet-induced obese mice.


Assuntos
Dieta Hiperlipídica , Síndrome Metabólica , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Glicemia/metabolismo , Peso Corporal , Feminino , Inflamação/metabolismo , Interleucina-6/metabolismo , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Inorg Chem ; 61(49): 19828-19837, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427262

RESUMO

Four new Cu(II)-based hexagonal complexes with the metallomacrocycle formulae [Cu6(5-nip)6(3-py)6(H2O)12] (1), [Cu6(5-nip)6(3-Clpy)6(H2O)12] (2), [Cu6(5-nip)6(3-Brpy)6(H2O)12] (3), and [Cu6(5-nip)6(3-Ipy)6(H2O)12] (4) have been synthesized using 5-nitroisophthalic acid (H25-nip) and pyridine (py)/3-halopyridine (3-Xpy; X = Cl, Br, and I) ligands. The structural features and supramolecular interactions of compounds 1-4 have been investigated using the single-crystal X-ray diffraction (SCXRD) technique. Interestingly, the hexagonal complexes undergo hydrogen bonding and π···π stacking interactions to form fascinating two-dimensional (2D) honeycomb-like structures. The synthesized complexes exhibit high electrical conductivity, arising from charge transport through space via π···π contacts. However, complexes containing 3-Brpy (3) and 3-Ipy (4) exhibit photosensitivity due to the presence of halogens with a larger size and lower ionization energy. The conductivity results are also in accordance with the theoretical prediction calculated by density functional theory (DFT) study.


Assuntos
Cobre , Cobre/química , Modelos Moleculares , Cristalografia por Raios X , Ligantes , Ligação de Hidrogênio
14.
Eur J Appl Physiol ; 122(4): 921-933, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35015112

RESUMO

PURPOSE: Individuals with a family history of type 2 diabetes (FH +) have an increased risk of developing type 2 diabetes. Circulating microRNAs (miRNAs) have been implicated as biomarkers of type 2 diabetes risk. Here, we investigated if four circulating miRNAs related to glucose metabolism were altered in men with a FH + and we conducted a preliminary analysis to determine if miRNA expressions were responsive to 8 weeks of combined exercise training. METHODS: Sixteen young healthy men (mean ± SD; age 22.5 ± 2.5; BMI 26.4 ± 4.0) with FH + or without a family history of type 2 diabetes (FH -) underweight 8 weeks of combined endurance and resistance exercise training (n = 8 FH -; n = 8 FH +). The expression of miR-29a, miR-133a, miR-133b, and miR-155 were measured in serum before and after exercise training. QIAGEN's Ingenuity® Pathway Analysis was used to examine miRNA target genes and their involvement in glucose metabolism signaling pathways. RESULTS: There were no differences in miRNA expressions between FH - and FH + . Exercise training did not alter miRNA expressions in either FH - or FH + despite improvements in insulin sensitivity, aerobic capacity, and muscular strength. miR-29a and miR-155 were inversely related to fasting glucose, and miR-133a and miR-133b were negatively correlated with glucose tolerance; however, correlations were not observed with insulin sensitivity. CONCLUSIONS: The circulating miRNAs- miR-29a, miR-133a, miR-133b, and miR-155 are related to measures of glucose metabolism in healthy, normoglycemic men, but do not reflect peripheral insulin sensitivity or improvements in metabolic health following 8 weeks of combined exercise training.


Assuntos
MicroRNA Circulante , Diabetes Mellitus Tipo 2 , MicroRNAs , Treinamento Resistido , Adulto , Exercício Físico , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto Jovem
15.
PLoS Genet ; 15(10): e1008443, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31661489

RESUMO

Arthropod-specific juvenile hormones control numerous essential functions in development and reproduction. In the dengue-fever mosquito Aedes aegypti, in addition to its role in immature stages, juvenile hormone III (JH) governs post-eclosion (PE) development in adult females, a phase required for competence acquisition for blood feeding and subsequent egg maturation. During PE, JH through its receptor Methoprene-tolerant (Met) regulate the expression of many genes, causing either activation or repression. Met-mediated gene repression is indirect, requiring involvement of intermediate repressors. Hairy, which functions downstream of Met in the JH gene-repression hierarchy, is one such factor. Krüppel-homolog 1, a zinc-finger transcriptional factor, is directly regulated by Met and has been implicated in both activation and repression of JH-regulated genes. However, the interaction between Hairy and Kr-h1 in the JH-repression hierarchy is not well understood. Our RNAseq-based transcriptomic analysis of the Kr-h1-depleted mosquito fat body revealed that 92% of Kr-h1 repressed genes are also repressed by Met, supporting the existence of a hierarchy between Met and Kr-h1 as previously demonstrated in various insects. Notably, 130 genes are co-repressed by both Kr-h1 and Hairy, indicating regulatory complexity of the JH-mediated PE gene repression. A mosquito Kr-h1 binding site in genes co-regulated by this factor and Hairy was identified computationally. Moreover, this was validated using electrophoretic mobility shift assays. A complete phenocopy of the effect of Met RNAi depletion on target genes could only be observed after Kr-h1 and Hairy double RNAi knockdown, suggesting a synergistic action between these two factors in target gene repression. This was confirmed using a cell-culture-based luciferase reporter assay. Taken together, our results indicate that Hairy and Kr-h1 not only function as intermediate downstream factors, but also act together in a synergistic fashion in the JH/Met gene repression hierarchy.


Assuntos
Aedes/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Aedes/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Corpo Adiposo/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Insetos/genética , Fatores de Transcrição Kruppel-Like/genética , Interferência de RNA , RNA-Seq , Proteínas Repressoras/genética
16.
Chemistry ; 27(7): 2254-2269, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931070

RESUMO

CO2 is a highly abundant, green, and sustainable carbon feedstock. Despite its kinetic inertness and thermodynamic stability, the development of various catalytic techniques has enabled the conversion of CO2 to value-added products such as carboxylic acids, amino acids, and heterocyclic compounds, where visible-light photocatalysis has emerged to be an efficient promoter of these processes. This Minireview covers the progress in the areas of CO2 incorporation onto organic matters based on the combined venture of renewable resources of CO2 and light energy with significant emphasis on the last three years' developments.

17.
Chem Rec ; 21(8): 1968-1984, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34327819

RESUMO

The ring-opening polymerization (ROP) of lactide (the dilactone of lactic acid) produces poly(lactide) commonly referred to as poly(lactic acid) (PLA). The monomer lactide, has two stereogenic centers and thus, three stereoisomers are possible, namely: D-(R,R), L-(S,S) and meso-lactide. The rac-lactide is an equimolar mixture of D- and L-enantiomers. Depending upon the relative configuration of the stereogenic centers in the polymeric chain, different tacticities (isotactic, syndiotactic, heterotactic and atactic) arise in the PLA chains. The study of the tacticity of a polymer is fundamental since it plays a crucial role in determining the physical properties of the polymer. NMR spectroscopy is a powerful analytical technique for the determination of the tacticity of PLA. This article describes in details the tacticity assignment for PLA derived from ROP of rac-lactide and meso-lactide, using homonuclear proton-decoupled 1 H NMR. The detailed tetrad level assignment pertinent to the methine hydrogen signal is the key for the determination of tacticity.

18.
Org Biomol Chem ; 19(6): 1230-1267, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33481983

RESUMO

A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.

19.
Angew Chem Int Ed Engl ; 60(23): 12841-12846, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779114

RESUMO

Higher cocrystal synthesis depends acutely on a knowledge of supramolecular synthons. We report three synthetic approaches towards ternary halogen bonded cocrystals that illustrate specificity and generality. Electrophilicity/nucleophilicity differences are needed among alternative sites of halogen bond formation. The two halogen bonds A⋅⋅⋅B and B⋅⋅⋅C in a halogen bonded ternary cocrystal ABC need to be of different strength. Interaction mimicry of hydrogen bonds by halogen bonds is a viable approach towards ternaries as illustrated with the pyrene structure. Finally, the crystal engineer should well be able to anticipate halogen bonds that are stronger than hydrogen bonds.

20.
Nanotechnology ; 31(20): 205203, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018237

RESUMO

Previous studies have mainly focused on the resistive switching (RS) of amorphous or polycrystalline HfO2-RRAM. The RS of single crystalline HfO2 films has been rarely reported. Yttrium doped HfO2 (YDH) thin films were fabricated and successful Y incorporation into HfO2 was confirmed by x-ray photoemission spectroscopy. A pure cubic phase of YDH and an abrupt YDH/Si interface were obtained and verified by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. A Pt/YDH/n++-Si heterostructure using Si as the bottom electrode was fabricated, which shows stable RS with an ON/OFF ratio of 100 and a reliable data retention (104 s). The electron transport mechanism was investigated in detail. It indicates that hopping conduction is dominating when the device is at a high resistance state, while space charge limited conduction acts as the dominant factor at a low resistance state. Such behavior, which is different from devices using TiN or Ti as electrodes, was attributed to the Y doping and specific YDH/Si interface. Our results demonstrate a proof of concept study to use highly doped Si as bottom electrodes along with single crystalline YDH as insulator layer for such RRAM applications as wireless sensors and synaptic simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA