Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 34(47): 15816-31, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411508

RESUMO

Specification of spinal cord neurons depends on gene regulation networks that impose distinct fates in neural progenitor cells (NPCs). Olig2 is a key transcription factor in these networks by inducing motor neuron (MN) specification and inhibiting interneuron identity. Despite the critical role of Olig2 in nervous system development and cancer progression, the upstream molecular mechanisms that control Olig2 gene transcription are not well understood. Here we demonstrate that Prox1, a transcription repressor and downstream target of proneural genes, suppresses Olig2 expression and therefore controls ventral spinal cord patterning. In particular, Prox1 is strongly expressed in V2 interneuron progenitors and largely excluded from Olig2+ MN progenitors (pMN). Gain- and loss-of-function studies in mouse NPCs and chick neural tube show that Prox1 is sufficient and necessary for the suppression of Olig2 expression and proper control of MN versus V2 interneuron identity. Mechanistically, Prox1 interacts with the regulatory elements of Olig2 gene locus in vivo and it is critical for proper Olig2 transcription regulation. Specifically, chromatin immunoprecipitation analysis in the mouse neural tube showed that endogenous Prox1 directly binds to the proximal promoter of the Olig2 gene locus, as well as to the K23 enhancer, which drives Olig2 expression in the pMN domain. Moreover, plasmid-based transcriptional assays in mouse NPCs suggest that Prox1 suppresses the activity of Olig2 gene promoter and K23 enhancer. These observations indicate that Prox1 controls binary fate decisions between MNs and V2 interneurons in NPCs via direct repression of Olig2 gene regulatory elements.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Homeodomínio/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Neurônios/fisiologia , Medula Espinal/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Células-Tronco Neurais/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento
2.
Glycobiology ; 21(10): 1382-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752865

RESUMO

Two different mutated forms of BRI2 protein are linked with familial British and Danish dementias, which present neuropathological similarities with Alzheimer's disease. BRI2 is a type II transmembrane protein that is trafficked through the secretory pathway to the cell surface and is processed by furin and ADAM10 (a disintegrin and metalloproteinase domain 10) to release secreted fragments of unknown function. Its apparent molecular mass (42-44 kDa) is significantly higher than that predicted by the number and composition of amino acids (30 kDa) suggesting that BRI2 is glycosylated. In support, bioinformatics analysis indicated that BRI2 bears the consensus sequence Asn-Thr-Ser (residues 170-173) and could be N-glycosylated at Asn170. Given that N-glycosylation is considered essential for protein folding, processing and trafficking, we examined whether BRI2 is N-glycosylated. Treatment of HEK293 (human embryonic kidney) cells expressing BRI2 with the N-glycosylation inhibitor tunicamycin or mutation of Asn170 to alanine reduced its molecular mass by ~2 kDa. These data indicate that BRI2 is N-glycosylated at Asn170. To examine the effect of N-glycosylation on BRI2 trafficking at the cell surface, we performed biotinylation and (35)S methionine pulse-chase experiments. These experiments showed that mutation of Asn170 to alanine reduced BRI2 trafficking at the cell surface and its steady state levels at the plasma membrane. Furthermore, we obtained data indicating that this mutation did not affect cleavage of BRI2 by furin or ADAM10. Our results confirm the theoretical predictions that BRI2 is N-glycosylated at Asn170 and show that this post-translational modification is essential for its expression at the cell surface but not for its proteolytic processing.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Asparagina/genética , Furina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/genética , Asparagina/metabolismo , Membrana Celular/metabolismo , Glicosilação , Células HEK293 , Humanos , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , Transfecção
3.
Sci Rep ; 9(1): 4936, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894556

RESUMO

Cholinergic neuromodulation has been described throughout the brain and has been implicated in various functions including attention, food intake and response to stress. Cholinergic modulation is also thought to be important for regulating motor systems, as revealed by studies of large cholinergic synapses on spinal motor neurons, called C boutons, which seem to control motor neuron excitability in a task-dependent manner. C boutons on spinal motor neurons stem from spinal interneurons that express the transcription factor Pitx2. C boutons have also been identified on the motor neurons of specific cranial nuclei. However, the source and roles of cranial C boutons are less clear. Previous studies suggest that they originate from Pitx2+ and Pitx2- neurons, in contrast to spinal cord C boutons that originate solely from Pitx2 neurons. Here, we address this controversy using mouse genetics, and demonstrate that brainstem C boutons are Pitx2+ derived. We also identify new Pitx2 populations and map the cholinergic Pitx2 neurons of the mouse brain. Taken together, our data present important new information about the anatomical organization of cholinergic systems which impact motor systems of the brainstem. These findings will enable further analyses of the specific roles of cholinergic modulation in motor control.


Assuntos
Tronco Encefálico/citologia , Neurônios Colinérgicos/citologia , Interneurônios/citologia , Neurônios Motores/citologia , Terminações Pré-Sinápticas/fisiologia , Animais , Tronco Encefálico/fisiologia , Neurônios Colinérgicos/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/citologia , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
4.
Neuron ; 80(4): 920-33, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24267650

RESUMO

Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation, whereas ablation of the Shox2 IN subset coinciding with the V2a population was without effect. Most Shox2 INs are rhythmically active during locomotion and analysis of synaptic connectivity showed that Shox2 INs contact other Shox2 INs, commissural neurons, and motor neurons, with preference for flexor motor neurons. Our findings focus attention on a subset of Shox2 INs that appear to participate in the rhythm-generating kernel for spinal locomotion.


Assuntos
Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Animais , Axônios/fisiologia , Dependovirus/genética , Fenômenos Eletrofisiológicos , Agonistas de Aminoácidos Excitatórios/farmacologia , Inativação Gênica , Ácido Glutâmico/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Neurônios Motores/fisiologia , N-Metilaspartato/farmacologia , Vias Neurais/fisiologia , Optogenética , Serotonina/farmacologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA