Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cardiology ; 130(2): 91-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25614184

RESUMO

UNLABELLED: Low ankle-brachial index (ABI) is a marker of peripheral arterial disease associated with higher cardiovascular risk. ABI has been found to be influenced by left ventricular ejection fraction (LVEF), but this relation is confounded by atherosclerosis. OBJECTIVES: Since nonhuman primates have a low incidence of atherosclerosis, we sought to evaluate the effect of LVEF on ABI in 24 healthy female bonnet macaques (age 83 ± 21 months). METHODS: LVEF was determined by echocardiography during anesthesia with ketamine. ABI was determined using automatic blood pressure cuff. RESULTS: Mean LVEF was 73 ± 6%. Mean ABI was 1.03 (range 0.78-1.17) with similar right and left lower limb values (p = 0.78). On univariate analysis, mean ABI was significantly correlated with LVEF (r = 0.58, p = 0.003) but not with age, crown-rump length or weight. Mean LVEF increased in a stepwise manner from lowest to highest ABI tertile (68 ± 6 vs. 73 ± 4 vs. 77 ± 5%, p = 0.008). On ordinal regression and forced multivariate linear analyses, ABI status was independently related to LVEF. CONCLUSIONS: ABI is influenced by left ventricular systolic function but not age, height, weight or mass index in bonnet macaques. Left ventricular systolic function should be accounted for when considering ABI measurements.


Assuntos
Índice Tornozelo-Braço , Volume Sistólico , Função Ventricular Esquerda/fisiologia , Animais , Aterosclerose/fisiopatologia , Pressão Sanguínea , Determinação da Pressão Arterial , Ecocardiografia , Feminino , Macaca radiata , Modelos Animais , Análise Multivariada , Doença Arterial Periférica/fisiopatologia , Análise de Regressão
2.
Mol Vis ; 20: 140-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505213

RESUMO

PURPOSE: To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo. METHODS: Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were subjected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and complement factor H (CFH) immunoblotting. RESULTS: mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p<0.05). mRNA expression of several other genes changed as a result of time in culture. Eyes subjected to microbead-induced IOP elevation had no differences in mRNA expression of complement genes and C1q protein levels (ANOVA; p>0.05 for both) with contralateral control and naïve control eyes. CONCLUSIONS: Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Pressão Intraocular/fisiologia , Retina/metabolismo , Animais , Separação Celular , Células Cultivadas , Espaço Extracelular/metabolismo , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Temperatura , Fatores de Tempo
3.
Front Neurosci ; 16: 812837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250454

RESUMO

Lost sensations, such as touch, could be restored by microstimulation (MiSt) along the sensory neural substrate. Such neuroprosthetic sensory information can be used as feedback from an invasive brain-machine interface (BMI) to control a robotic arm/hand, such that tactile and proprioceptive feedback from the sensorized robotic arm/hand is directly given to the BMI user. Microstimulation in the human somatosensory thalamus (Vc) has been shown to produce somatosensory perceptions. However, until recently, systematic methods for using thalamic stimulation to evoke naturalistic touch perceptions were lacking. We have recently presented rigorous methods for determining a mapping between ventral posterior lateral thalamus (VPL) MiSt, and neural responses in the somatosensory cortex (S1), in a rodent model (Choi et al., 2016; Choi and Francis, 2018). Our technique minimizes the difference between S1 neural responses induced by natural sensory stimuli and those generated via VPL MiSt. Our goal is to develop systems that know what neural response a given MiSt will produce and possibly allow the development of natural "sensation." To date, our optimization has been conducted in the rodent model and simulations. Here, we present data from simple non-optimized thalamic MiSt during peri-operative experiments, where we used MiSt in the VPL of macaques, which have a somatosensory system more like humans, as compared to our previous rat work (Li et al., 2014; Choi et al., 2016). We implanted arrays of microelectrodes across the hand area of the macaque S1 cortex as well as in the VPL. Multi and single-unit recordings were used to compare cortical responses to natural touch and thalamic MiSt in the anesthetized state. Post-stimulus time histograms were highly correlated between the VPL MiSt and natural touch modalities, adding support to the use of VPL MiSt toward producing a somatosensory neuroprosthesis in humans.

4.
Biol Psychiatry Glob Open Sci ; 2(1): 54-60, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36324603

RESUMO

Background: Early-life stress is associated with alterations in telomere length, a marker of accumulated stress and aging, and a risk factor for psychiatric disorders. Nonhuman primate maternal variable foraging demand (VFD) is a validated early-life stress model, resulting in anxiety- and depressive-like symptoms in offspring. Previous studies reported increased plasma glucagon-like peptide 1 (pGLP-1) along with insulin resistance in this model. We investigated whether VFD rearing related to adult telomere length and to these neuroendocrine markers. Methods: Adult leukocyte telomere length was measured in VFD-reared (12 males, 13 females) and non-VFD-reared (9 males, 26 females) bonnet macaques. Associations between adult telomere length and adolescent fasting pGLP-1 or insulin resistance in VFD-reared versus non-VFD-reared groups were examined using regression modeling, controlling for sex, weight, and age. Results: VFD subjects had relatively longer telomeres than non-VFD subjects (p = .017), and females relatively longer than males (p = .0004). Telomere length was positively associated with pGLP-1 (p = .0009) and with reduced insulin sensitivity (p < .0001) in both sexes, but not as a function of rearing group. Conclusions: Unexpectedly, VFD was associated with longer adult telomere length. Insulin resistance may lead to higher pGLP-1 levels in adolescence, which could protect telomere length in VFD offspring as adults. Associations between adult telomere length and adolescent insulin resistance and high pGLP-1 may reflect an adaptive, compensatory response after early-life stress exposure.

5.
J Affect Disord ; 286: 204-212, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740637

RESUMO

INTRODUCTION: Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant ('s') of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis. We investigate these potential developmental precursors of neurogenic alterations using a bonnet macaque model. METHODS: Twenty-five male infant bonnet macaques were randomized to stressed [variable foraging demand (VFD)] or normative [low foraging demand (LFD)] rearing protocols and genotyped for 5-HTTLPR polymorphisms. Adolescent MRI brain scans (mean age 4.2y) were available for 14 subjects. Adult-born neurons were detected post-mortem (mean age 8.6y) via immunohistochemistry targeting the microtubule protein doublecortin (DCX). Models were adjusted for age and weight. RESULTS: A putative vulnerability group (VG) of VFD-reared 's'-carriers (all 's/l') exhibited reduced neurogenesis compared to non-VG subjects. Neurogenesis levels were positively predicted by ipsilateral hippocampal volume normalized for total brain volume, but not by contralateral or raw hippocampal volume. LIMITATIONS: No 's'-carriers were identified in LFD-reared subjects, precluding a 2×2 factorial analysis. CONCLUSION: The 's' allele (with adverse rearing) and low adolescent hippocampal volume portend a neurogenic deficit in adult macaques, suggesting persistent alterations in hippocampal plasticity may contribute to these developmental factors' affective risk in humans.


Assuntos
Experiências Adversas da Infância , Proteínas da Membrana Plasmática de Transporte de Serotonina , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Macaca/metabolismo , Masculino , Neurogênese/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Psicológico/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-30246167

RESUMO

BACKGROUND: Maternal response to allostatic overload during infant rearing may alter neurobiological measures in grown offspring, potentially increasing susceptibility to mood and anxiety disorders. We examined maternal cerebrospinal fluid (CSF) glutamate response during exposure to variable foraging demand (VFD), a bonnet macaque model of allostatic overload, testing whether activation relative to baseline predicted concomitant CSF elevations of the stress neuropeptide, corticotropin-releasing factor. We investigated whether VFD-induced activation of maternal CSF glutamate affects maternal-infant attachment patterns and offspring CSF 5-hydroxyindoleacetic acid concentrations. METHODS: Mother-infant dyads were exposed to the "VFD stressor," a paradigm in which mothers experience 16 weeks of foraging uncertainty while rearing their infant offspring. Through staggering the infant age of VFD onset, both a cross-sectional design and a longitudinal design were used. Maternal CSF glutamate and glutamine concentrations post-VFD exposure were cross-sectionally compared to maternal VFD naive controls. Proportional change in concentrations of maternal glutamate (and glutamine), a longitudinal measure, was evaluated in relation to VFD-induced elevations of CSF corticotropin-releasing factor. The former measure was related to maternal-infant proximity scores obtained during the final phases of VFD exposure. Maternal glutamatergic response to VFD exposure was used as a predictor variable for young adolescent offspring CSF metabolites of serotonin, dopamine, and norepinephrine. RESULTS: Following VFD exposure, maternal CSF glutamate concentrations correlated positively with maternal CSF CRF concentrations. Activation relative to baseline of maternal CSF glutamate concentrations following VFD exposure correlated directly with a) increased maternal-infant proximity during the final phases of VFD and b) offspring CSF concentrations of monoamine metabolites including 5-hydroxyindoleacetic acid, which was elevated relative to controls. CONCLUSIONS: Activation of maternal CSF glutamate in response to VFD-induced allostasis is directly associated with elevations of maternal CSF corticotropin-releasing factor. Maternal CSF glutamate alterations induced by VFD potentially compromise serotonin neurotransmission in grown offspring, conceivably modeling human vulnerability to treatment-resistant mood and anxiety disorders.

7.
Neurobiol Stress ; 8: 202-210, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29888314

RESUMO

BACKGROUND: Early life stress (ELS) in macaques in the form of insecure maternal attachment putatively induces epigenetic adaptations resulting in a "thrifty phenotype" throughout the life cycle. For instance, ELS induces persistent increases in insulin resistance, hippocampal and corpus callosum atrophy and reduced "behavioral plasticity", which, taken together, engenders an increased risk for mood and anxiety disorders in humans but also a putative sparing of calories. Herein, we test the hypothesis whether a thrifty phenotype induced by ELS is peripherally evident as hypotrophy of cardiac structure and function, raising the possibility that certain mood disorders may represent maladaptive physiological and central thrift adaptations. METHODS: 14 adult bonnet macaques (6 males) exposed to the maternal variable foraging demand (VFD) model of ELS were compared to 20 non-VFD adult subjects (6 males). Left ventricle end-diastolic dimension (LVEDD), Left ventricle end-systolic dimension (LVESD) and stroke volume (SV) were calculated using echocardiography. Blood pressure and heart rate were measured only in females. Previously obtained neurobehavioral correlates available only in males were analyzed in the context of cardiac parameters. RESULTS: Reduced LVESD (p < 0.05) was observed when controlled for age, sex, body weight and crown-rump length whereas ejection fraction (EF) (p = 0.037) was greater in VFD-reared versus non-VFD subjects. Pulse pressure was lower in VFD versus non-VFD females (p < 0.05). Male timidity in response to a human intruder was associated with reduced LVEDD (p < 0.05). CONCLUSIONS: ELS is associated with both structural and functional reductions of left ventricular measures, potentially implying a body-wide thrifty phenotype. Parallel "thrift" adaptations may occur in key brain areas following ELS and may play an unexplored role in mood and anxiety disorder susceptibility.

8.
PLoS One ; 12(9): e0184340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880949

RESUMO

INTRODUCTION: Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term "social allostasis." We postulate that maternal food insecurity induces a "superorganism" state through coordination of individual HPA axis response. METHODS: Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. RESULTS: Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our "dyadic vulnerability" index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p < 0.0001) whereas relatively "advantaged" dyads exhibited maternal cortisol increases in response to VFD exposure. COMMENT: In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a "superorganism" version of HPA axis homeostasis, provisionally termed "social allostasis."


Assuntos
Comportamento Alimentar/fisiologia , Macaca radiata/fisiologia , Comportamento Materno/fisiologia , Alostase , Animais , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/líquido cefalorraquidiano , Feminino , Hidrocortisona/sangue , Hidrocortisona/líquido cefalorraquidiano , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA