Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 298(1): 101412, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793835

RESUMO

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Assuntos
Técnicas Biossensoriais , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Camundongos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178473

RESUMO

Protein degradation is a fundamental process in all living organisms. An important part of this system is a multisubunit, barrel-shaped protease complex called the proteasome. This enzyme is directly responsible for the proteolysis of ubiquitin- or pup-tagged proteins to smaller peptides. In this study, we present a series of 92 psoralen derivatives, of which 15 displayed inhibitory potency against the Mycobacterium tuberculosis proteasome in low micromolar concentrations. The best inhibitors, i.e., 8, 11, 13 and 15, exhibited a mixed type of inhibition and overall good inhibitory potency in biochemical assays. N-(cyanomethyl)acetamide 8 (Ki = 5.6 µM) and carboxaldehyde-based derivative 15 (Ki = 14.9 µM) were shown to be reversible inhibitors of the enzyme. On the other hand, pyrrolidine-2,5-dione esters 11 and 13 irreversibly inhibited the enzyme with Ki values of 4.2 µM and 1.1 µM, respectively. In addition, we showed that an established immunoproteasome inhibitor, PR-957, is a noncompetitive irreversible inhibitor of the mycobacterial proteasome (Ki = 5.2 ± 1.9 µM, kinact/Ki = 96 ± 41 M-1·s-1). These compounds represent interesting hit compounds for further optimization in the development of new drugs for the treatment of tuberculosis.


Assuntos
Ficusina/farmacologia , Inibidores de Proteassoma/farmacologia , Tuberculose/tratamento farmacológico , Ficusina/química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Inibidores de Proteassoma/química , Proteólise/efeitos dos fármacos , Tuberculose/microbiologia , Ubiquitina/química , Ubiquitinas/química
3.
J Enzyme Inhib Med Chem ; 34(1): 1010-1017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072165

RESUMO

The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for antibacterial drug discovery. MurC, D, E and F are all ATP-dependent ligases. Accordingly, with the aim being to find multiple inhibitors of these enzymes, we screened a collection of ATP-competitive kinase inhibitors, on Escherichia coli MurC, D and F, and identified five promising scaffolds that inhibited at least two of these ligases. Compounds 1, 2, 4 and 5 are multiple inhibitors of the whole MurC to MurF cascade that act in the micromolar range (IC50, 32-368 µM). NMR-assisted binding studies and steady-state kinetics studies performed on aza-stilbene derivative 1 showed, surprisingly, that it acts as a competitive inhibitor of MurD activity towards D-glutamic acid, and additionally, that its binding to the D-glutamic acid binding site is independent of the enzyme closure promoted by ATP.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Ligases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Cinética , Ligases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 27(15): 3529-3533, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579123

RESUMO

MurA is an intracellular bacterial enzyme that is essential for peptidoglycan biosynthesis, and is therefore an important target for antibacterial drug discovery. We report the synthesis, in silico studies and extensive structure-activity relationships of a series of quinazolinone-based inhibitors of MurA from Escherichia coli. 3-Benzyloxyphenylquinazolinones showed promising inhibitory potencies against MurA, in the low micromolar range, with an IC50 of 8µM for the most potent derivative (58). Furthermore, furan-substituted quinazolinones (38, 46) showed promising antibacterial activities, with MICs from 1µg/mL to 8µg/mL, concomitant with their MurA inhibitory potencies. These data represent an important step towards the development of novel antimicrobial agents to combat increasing bacterial resistance.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Alquil e Aril Transferases/metabolismo , Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinazolinonas/síntese química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 27(4): 944-949, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077258

RESUMO

We report on the successful application of ProBiS-CHARMMing web server in the discovery of new inhibitors of MurA, an enzyme that catalyzes the first committed cytoplasmic step of bacterial peptidoglycan synthesis. The available crystal structures of Escherichia coli MurA in the Protein Data Bank have binding sites whose small volume does not permit the docking of drug-like molecules. To prepare the binding site for docking, the ProBiS-CHARMMing web server was used to simulate the induced-fit effect upon ligand binding to MurA, resulting in a larger, more holo-like binding site. The docking of a filtered ZINC compound library to this enlarged binding site was then performed and resulted in three compounds with promising inhibitory potencies against MurA. Compound 1 displayed significant inhibitory potency with IC50 value of 1µM. All three compounds have novel chemical structures, which could be used for further optimization of small-molecule MurA inhibitors.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Carboidratos , Descoberta de Drogas , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Peptidoglicano/metabolismo
6.
ACS Infect Dis ; 8(12): 2430-2440, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417754

RESUMO

Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 µM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 µM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 µM.


Assuntos
Proteínas de Bactérias , Metiltransferases , Mycobacterium tuberculosis , Vitamina K 2 , Humanos , Escherichia coli/genética , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Vitamina K 2/metabolismo
7.
Front Microbiol ; 9: 3322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692977

RESUMO

We report the successful implementation of virtual screening in the discovery of new inhibitors of undecaprenyl pyrophosphate synthase (UppS) from Escherichia coli. UppS is an essential enzyme in the biosynthesis of bacterial cell wall. It catalyzes the condensation of farnesyl pyrophosphate (FPP) with eight consecutive isopentenyl pyrophosphate units (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate. The latter serves as a lipid carrier for peptidoglycan synthesis, thus representing an important target in the antibacterial drug design. A pharmacophore model was designed on a known bisphosphonate BPH-629 and used to prepare an enriched compound library that was further docked into UppS conformational ensemble generated by molecular dynamics experiment. The docking resulted in three anthranilic acid derivatives with promising inhibitory activity against UppS. Compound 2 displayed high inhibitory potency (IC50 = 25 µM) and good antibacterial activity against E. coli BW25113 ΔtolC strain (MIC = 0.5 µg/mL).

8.
Drug Discov Today ; 22(3): 492-502, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27663094

RESUMO

The increasing prevalence of multidrug-resistant strains of Mycobacterium tuberculosis is the main contributing factor in unfavorable outcomes in the treatment of tuberculosis. Studies suggest that direct inhibitors of InhA, an enoyl-ACP-reductase, might yield promising clinical candidates that can be developed into new antitubercular drugs. In this review, we describe the application of different hit-identification strategies to InhA, which clearly illustrate the druggability of its active site through distinct binding mechanisms. We further characterize four classes of InhA inhibitors that show novel binding modes, and provide evidence of their successful target engagement as well as their in vivo activity.


Assuntos
Antituberculosos , Inibinas/antagonistas & inibidores , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Cristalografia , Desenho de Fármacos , Humanos , Estrutura Molecular , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo
9.
Curr Med Chem ; 23(5): 464-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26718796

RESUMO

Expanding antibiotic use in clinical practice and emergence of bacterial resistance are fueling research efforts for the development of novel antibacterials. Underexploited or completely novel mechanistic approaches and biological targets are of especial interest. Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in the biosynthesis of the bacterial cell wall. Although UppS is a validated target, no selective inhibitors occur in materia medica. Nevertheless, several native substrate analogues have been reported and used in enzyme kinetics studies or as pharmacological probes. The majority of small-molecule UppS inhibitors belong to the well-known class of bisphosphonates that are primarily used for treatment of bone resorption disorders. The most potent compound of this class has an IC50 of 0.59 µM. Inherently, the selectivity and suitability of such compounds for antimicrobial drug design can be questioned. Therefore, highthroughput and virtual screenings for non-bisphosphonate inhibitors were performed, and nanomolar inhibitors of UppS were identified, some with antimicrobial activities towards clinically relevant strains. The reported scaffolds belong to tetramic and tetronic acids with IC50 in the 100-nM range, and to dihydropyridines with IC50 down to 40 nM, all with antibacterial activity. Aryl-diketo acids are also potent inhibitors with MRSA antimicrobial activity, with the allosteric inhibitor methylisoxazole-4-carboxamide (IC50, 50 nM) active on several pathogenic Streptococcus pneumoniae strains. Clomiphene is a well-known oestrogen receptor modulator, and it has been reported to inhibit UppS. Although conclusions on the structure activity relationships cannot be drawn from all these data, these compound series represent an important contribution to the field of antibiotics.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoxazóis/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Alquil e Aril Transferases/metabolismo , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Isoxazóis/química , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade
10.
Med Chem ; 12(8): 742-750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26972825

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) has been associated with several inflammatory diseases, such as sepsis, atherosclerosis and chronic pain. OBJECTIVE: The aim of the present study was to develop an efficient and straightforward synthetic approach for the preparation of small-molecule antagonists Naryl- N'-(5-(2-hydroxybenzoyl)pyrimidin-2-yl)guanidines in order to evaluate these for TLR4 antagonist activity and to obtain useful information about their structure-activity relationships. METHODS: The present work have designed and optimized a three-step synthetic route for derivatives of a previously demonstrated antagonist of TLR4: 1-(4- fluorophenyl)-2-(5-(2-hydroxy-5-methoxybenzoyl)pyrimidin-2-yl)guanidine. The antagonist activities of eight novel synthesized compounds were evaluated on cells which selectively express TLR4. RESULTS: Three guanidine derivatives showed promising antagonist activities, with IC50 values in the low micromolar range. CONCLUSION: Our findings represent an important starting point for further studies of small-molecule agents targeting Toll-like receptors.


Assuntos
Guanidinas/farmacologia , Pirimidinas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Guanidinas/síntese química , Guanidinas/química , Células HEK293 , Humanos , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
11.
J Med Chem ; 59(24): 11069-11078, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27936766

RESUMO

Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiS-ligands approach, which for a given protein structure allows prediction of its binding sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands' poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin's utility in the early drug discovery process.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos/biossíntese , Ligantes , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA