Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(5): e202315401, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055190

RESUMO

The organocatalytic enolization of 2-arylacetamides, followed by an enantioselective intramolecular conjugate addition to tethered 2,5-cyclohexadienones, yielding 3D fused N-heterocycles, is described. The transformation represents the first strong activating group-free activation of carboxamides via α-C-H deprotonation in a metal-free, catalytic, and enantioselective reaction, and is achieved by employing a bifunctional iminophosphorane (BIMP) superbase.

2.
Angew Chem Int Ed Engl ; 62(21): e202303391, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929179

RESUMO

Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,ß-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including ß-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.

3.
J Am Chem Soc ; 144(2): 1006-1015, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990142

RESUMO

The first metal-free catalytic intermolecular enantioselective Michael addition to unactivated α,ß-unsaturated amides is described. Consistently high enantiomeric excesses and yields were obtained over a wide range of alkyl thiol pronucleophiles and electrophiles under mild reaction conditions, enabled by a novel squaramide-based bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0 mol %) were achieved on a decagram scale, demonstrating the scalability of the reaction. Computational analysis revealed the origin of the high enantiofacial selectivity via analysis of relevant transition structures and provided substantial support for specific noncovalent activation of the carbonyl group of the α,ß-unsaturated amide by the catalyst.

4.
Acc Chem Res ; 53(10): 2235-2247, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32886474

RESUMO

To improve the field of catalysis, there is a substantial and growing need for novel high-performance catalysts providing new reactivity. To date, however, the set of reactions that can be reliably performed to prepare chiral compounds in largely one enantiomeric form using chiral catalysts still represents a small fraction of the toolkit of known transformations. In this context, chiral Brønsted bases have played an expanding role in catalyzing enantioselective reactions between various carbon- and heteroatom-centered acids and a host of electrophilic reagents. This Account describes our recent efforts developing and applying a new family of chiral Brønsted bases incorporating an H-bond donor moiety and a strongly basic iminophosphorane, which we have named BIMPs (Bifunctional IMinoPhosphoranes), as efficient catalysts for reactions currently out of reach of more widespread tertiary amine centered bifunctional catalysts. The iminophosphorane Brønsted base is easily generated by the Staudinger reaction of a chiral organoazide and commercially available phosphine, which allows easy modification of the catalyst structure and fine-tuning of the iminophosphorane pKBH+. We have demonstrated that BIMP catalysts can efficiently promote the enantioselective addition of nitromethane to low reactivity N-diphenylphosphinoyl (DPP)-protected imines of ketones (ketimines) to access valuable chiral diamine and α-quaternary amino acid building blocks, and later extended this methodology to phosphite nucleophiles. Subsequently, the reaction scope was expanded to include the Michael addition of high pKa alkyl thiols to α-substituted acrylate esters, ß-substituted α,ß-unsaturated esters, and alkenyl benzimidazoles as well as the challenging direct aldol addition of aryl ketones to α-fluorinated ketones. Finally, BIMP catalysts were shown to be used in key steps in the synthesis of complex alkaloid natural products (-)-nakadomarin A and (-)-himalensine A, as well as in polymer synthesis. In most cases, the predictable nature of the BIMP promoted reactions was demonstrated by multigram scale-up while employing low catalyst loadings (down to 0.05 mol%). Furthermore, it was shown that BIMP catalysts can be easily immobilized onto a solid support in one-step for increased catalyst recycling and flow chemistry applications. Alongside our own work, this Account also includes elegant work by Johnson and co-workers utilizing the BIMP catalyst system, when alternative catalysts proved suboptimal.

5.
Chem Sci ; 12(17): 6064-6072, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33996002

RESUMO

An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,ß-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA