Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 350: 119545, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995482

RESUMO

A novel octahedral distorted coordination complex was formed from a copper transition metal with a bidentate ligand (1,10-Phenanthroline) and characterized by Ultraviolet-visible spectroscopy, Ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller, Field emission scanning electron microscopy, and Single-crystal X-ray diffraction. The Hirshfeld surface and fingerprint plot analyses were conducted to determine the interactions between atoms in the Cu(II) complex. DFT calculations showed that the central copper ion and its coordinated atoms have an octahedral geometry. The Molecular electrostatic potential (MEP) map indicated that the copper (II) complex is an electrophilic compound that can interact with negatively charged macromolecules. The HOMO-LUMO analysis demonstrated the π nature charge transfer from acetate to phenanthroline. The band gap of [Cu(phen)2(OAc)]·PF6 photocatalyst was estimated to be 2.88 eV, confirming that this complex is suitable for environmental remediation. The photocatalytic degradation of erythrosine, malachite green, methylene blue, and Eriochrome Black T as model organic pollutants using the prepared complex was investigated under visible light. The [Cu(phen)2(OAc)]·PF6 photocatalyst exhibited degradation 94.7, 90.1, 82.7, and 74.3 % of malachite green, methylene blue, erythrosine, and Eriochrome Black T, respectively, under visible illumination within 70 min. The results from the Langmuir-Hinshelwood kinetic analysis demonstrated that the Cu(II) complex has a higher efficiency for the degradation of cationic pollutants than the anionic ones. This was attributed to surface charge attraction between photocatalyst and cationic dyes promoting removal efficiency. The reusability test indicated that the photocatalyst could be utilized in seven consecutive photocatalytic degradation cycles with an insignificant decrease in efficiency.


Assuntos
Cobre , Poluentes Ambientais , Cobre/química , Azul de Metileno/química , Cinética , Eritrosina , Luz , Corantes/química , Catálise
2.
J Environ Manage ; 324: 116387, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36352727

RESUMO

MXenes two-dimensional materials have recently excited researchers' curiosity for various industrial applications. MXenes are promising materials for environmental remediation technologies to sense and mitigate various intractable hazardous pollutants from the atmosphere due to their inherent mechanical and physicochemical properties, such as high surface area, increased hydrophilicity, high conductivity, changing band gaps, and robust electrochemistry. This review discusses the versatile applications of MXenes and MXene-based nanocomposites in various environmental remediation processes. A brief description of synthetic procedures of MXenes nanocomposites and their different properties are highlighted. Afterward, the photocatalytic abilities of MXene-based nanocomposites for degrading organic pollutants, removal of heavy metals, and inactivation of microorganisms are discussed. In addition, the role of MXenes anti-corrosion support in the lifetime of some semiconductors was addressed. Current challenges and future perspectives toward the application of MXene materials for environmental remediation and energy production are summarized for plausible real-world use.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanocompostos , Purificação da Água , Desinfecção , Nanocompostos/química
3.
J Environ Manage ; 301: 113850, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619590

RESUMO

Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.


Assuntos
Quitosana , Nanocompostos , Purificação da Água , Materiais Biocompatíveis , Celulose , Quitina
4.
J Environ Manage ; 290: 112627, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991767

RESUMO

Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Fontes Geradoras de Energia , Combustíveis Fósseis
5.
Molecules ; 22(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657579

RESUMO

This review addresses the preparation of antibacterial 2D textile and thin polymer films and 3D surfaces like catheters for applications in hospital and health care facilities. The sputtering of films applying different levels of energy led to the deposition of metal/oxide/composite/films showing differentiated antibacterial kinetics and surface microstructure. The optimization of the film composition in regards to the antibacterial active component was carried out in each case to attain the fastest antibacterial kinetics, since this is essential when designing films avoiding biofilm formation (under light and in the dark). The antimicrobial performance of these sputtered films on Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) were tested. A protecting effect of TiO2 was found for the release of Cu by the TiO2-Cu films compared to films sputtered by Cu only. The Cu-released during bacterial inactivation by TiO2-Cu was observed to be much lower compared to the films sputtered only by Cu. The FeOx-TiO2-PE films induced E. coli inactivation under solar or under visible light with a similar inactivation kinetics, confirming the predominant role of FeOx in these composite films. By up-to-date surface science techniques were used to characterize the surface properties of the sputtered films. A mechanism of bacteria inactivation is suggested for each particular film consistent with the experimental results found and compared with the literature.


Assuntos
Antibacterianos/farmacologia , Membranas Artificiais , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
6.
Molecules ; 22(7)2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672875

RESUMO

In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Microbiologia da Água , Purificação da Água/métodos , Colômbia , Côte d'Ivoire , Países Desenvolvidos , Países em Desenvolvimento , Oxirredução , Suíça , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
7.
Antimicrob Agents Chemother ; 60(9): 5349-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353266

RESUMO

In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 10(4) to 10(8) CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (10(7) CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 10(4) to 10(7) CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 10(8) CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriemia/prevenção & controle , Cateteres de Demora/microbiologia , Materiais Revestidos Biocompatíveis/farmacologia , Cobre/farmacologia , Prata/farmacologia , Infecções Estafilocócicas/prevenção & controle , Adsorção , Animais , Bacteriemia/microbiologia , Contagem de Colônia Microbiana , Fibrina/química , Veias Jugulares , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliuretanos/química , Ratos , Infecções Estafilocócicas/microbiologia
8.
Analyst ; 141(13): 4121-9, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27160416

RESUMO

The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 µm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.


Assuntos
Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oócitos/citologia , Espectrometria de Massa de Íon Secundário , Animais , Liofilização , Camundongos
9.
Appl Microbiol Biotechnol ; 100(13): 5945-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27020284

RESUMO

Using direct current magnetron sputtering (DCMS), we generated flexible copper polyester surfaces (Cu-PES) and investigated their antimicrobial activity against a range of multidrug-resistant (MDR) pathogens including eight Gram-positive isolates (three methicillin-resistant Staphylococcus aureus [MRSA], four vancomycin-resistant enterococci, one methicillin-resistant Staphylococcus epidermidis) and four Gram-negative strains (one extended-spectrum ß-lactamase-producing [ESBL] Escherichia coli, one ESBL Klebsiella pneumoniae, one imipenem-resistant Pseudomonas aeruginosa, and one ciprofloxacin-resistant Acinetobacter baumannii). Bactericidal activity (≥3 log10 CFU reduction of the starting inoculum) was reached within 15-30 min exposure to Cu-PES. Antimicrobial activity of Cu-PES persisted in the absence of oxygen and against both Gram-positive and Gram-negative bacteria containing elevated levels of catalases, indicating that reactive oxygen species (ROS) do not play a primary role in the killing process. The decrease in cell viability of MRSA ATCC 43300 and Enterococcus faecalis V583 correlated with the progressive loss of cytoplasmic membrane integrity both under aerobic and anaerobic conditions, suggesting that Cu-PES mediated killing is primarily induced by disruption of the cytoplasmic membrane function. Overall, we here present novel antimicrobial copper surfaces with improved stability and sustainability and provide further insights into their mechanism of killing.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Cobre/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/química , Cobre/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/química
10.
Photochem Photobiol Sci ; 14(12): 2238-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26528694

RESUMO

In this study, the photoreactivation and the modification of dark repair of E. coli in a simulated secondary effluent were investigated after initial irradiation under different conditions. The simulated solar exposure of the secondary wastewater was followed by exposure to six different low-intensity fluorescent lamps (blacklight blue, actinic blacklight, blue, green, yellow and indoor light) for up to 8 h. When photoreactivation was monitored, blue and green colored fluorescent light led to increased bacterial regrowth. Blacklight lamps further inactivated the remaining bacteria, while yellow and indoor light led to accelerated growth of healthy cells. Exposure to fluorescent lamps was followed by long term storage in darkness, to monitor the bacterial repair in the dark. The response was correlated with the pre-exposure dose of applied solar irradiation, and to a lesser extent with the fluorescent light dose. Bacteria which had undergone extensive exposure showed no response under fluorescent light or during storage in the dark. Finally, the statistical treatment of the data allowed us to suggest a linear model, which is non-selective in terms of the fluorescent light applied. The estimation of the final bacterial population was predicted well (R-sq ∼ 75%) and the photoreactivation risk was found to be more important for cultivable cells.


Assuntos
Desinfecção/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Luz , Águas Residuárias/microbiologia , Fluorescência , Luz Solar , Purificação da Água/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-39088169

RESUMO

Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.

12.
Environ Sci Pollut Res Int ; 31(17): 25616-25636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478307

RESUMO

The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.


Assuntos
Anti-Infecciosos , Olea , Olea/química , Antioxidantes/farmacologia , Fenóis/análise , Azeite de Oliva/química , Antibacterianos
13.
Chemosphere ; 362: 142433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815812

RESUMO

Pesticides are becoming more prevalent in agriculture to protect crops and increase crop yields. However, nearly all pesticides used for this purpose reach non-target crops and remain as residues for extended periods. Contamination of soil by widespread pesticide use, as well as its toxicity to humans and other living organisms, is a global concern. This has prompted us to find solutions and develop alternative remediation technologies for sustainable management. This article reviews recent technological developments for remediating pesticides from contaminated soil, focusing on the following major points: (1) The application of various pesticide types and their properties, the sources of pesticides related to soil pollution, their transport and distribution, their fate, the impact on soil and human health, and the extrinsic and intrinsic factors that affect the remediation process are the main points of focus. (2) Sustainable pesticide degradation mechanisms and various emerging nano- and bioelectrochemical soil remediation technologies. (3) The feasible and long-term sustainable research and development approaches that are required for on-site pesticide removal from soils, as well as prospects for applying them directly in agricultural fields. In this critical analysis, we found that bioremediation technology has the potential for up to 90% pesticide removal from the soil. The complete removal of pesticides through a single biological treatment approach is still a challenging task; however, the combination of electrochemical oxidation and bioelectrochemical system approaches can achieve the complete removal of pesticides from soil. Further research is required to remove pesticides directly from soils in agricultural fields on a large-scale.


Assuntos
Agricultura , Biodegradação Ambiental , Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Praguicidas/análise , Praguicidas/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Solo/química , Humanos
14.
Environ Sci Pollut Res Int ; 30(4): 10733-10744, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36083373

RESUMO

In this work, we report on the effect of anodization time on the morphology, optical, and photocatalytic properties of TiO2 nanotubes (NTs) allowing bacterial inactivation and two organic pollutant degradation under low-intensity solar-simulated light. Scanning electron microscopy (SEM) showed that the length of the TiO2 NTs increased from 2.8 to 25.8 µm as anodization time was increased from 15 to 300 min at 60 V, respectively. The X-ray diffraction (XRD) patterns showed that all samples crystallize in the anatase phase after annealing at 400 °C for 3 h. Samples anodized for 30 and 60 min exhibit low diffuse reflection at 400 nm, which was attributed to the disorder-induced exciton scattering at the molecular level. The intensity of the photoluminescence (PL) spectra was found to increase as the length of the NTs increases up to a maximum anodization time of 300 min, revealing the contribution of bulk excitonic states. A maximum photoelectric conversion efficiency of 0.55% was obtained at a potential of - 0.5 V vs. Ag/AgCl for TiO2 NTs anodized for 60 min. The optimized NTs (anodized for 60 min) showed a photocatalytic bacterial inactivation of a magnitude of 6 log within 360 min and a degradation of indole and methylene blue (MB) under low-intensity solar-simulated light (50 mW/cm2). The stability of the prepared catalyst was tested over several cycles.


Assuntos
Nanotubos , Titânio , Titânio/química , Luz , Nanotubos/química , Microscopia Eletrônica de Varredura
15.
Environ Sci Pollut Res Int ; 30(39): 90383-90396, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36585579

RESUMO

The development of catalysis technologies for sustainable environmental applications, especially an alternative to ammonia (NH3) production under the Haber-Bosch process, has gained a lot of scope in recent days. The current work demonstrated a green synthesis of graphitic carbon nitride (gC3N4) containing magnesium-zinc-aluminium mixed metal oxides (MgZnAl-MMO) derived from layered double hydroxide (LDH) for visible light aided catalytic production of ammonia. Pyrolysis-hydrothermal techniques were adopted for the synthesis and fabrication of the gC3N4/MgZnAl-MMO catalytic composite. Characterization results of field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), UV-visible spectroscopy, photoluminescence (PL), etc. showed the desired properties and functionalities like semi-crystalline structure with rough surface morphology that enhance the sorption reactions. Catalytic composite gC3N4/MgZnAl-MMO showed a bandgap energy of 2.16 eV that is considerably shifted toward the visible range when compared to gC3N4 (2.39 eV) and MgZnAl-MMO (2.93 eV). The results were also well complied with XPS results obtained that promote solar-based photocatalysis. The gC3N4/MgZnAl-MMO assisted photocatalytic production of NH3 in an aqueous media proved to be acceptable by the production of a maximum 47.56 µmol/L NH3 under visible spectrum employing a light emitting diode (LED) source. The results showed that the advancement of catalyst for desired functionalities and NH3 production using LED simulating solar light-aided catalysis would be an alternative to the Haber-Bosch process and solar-based sustainable processes for NH3 production.


Assuntos
Amônia , Nitrogênio , Luz Solar , Hidróxidos/química , Catálise
16.
Bioresour Technol ; 368: 128333, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403911

RESUMO

The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.


Assuntos
Ondas Ultrassônicas , Ultrassom , Espécies Reativas de Oxigênio , Biomassa
17.
Environ Sci Pollut Res Int ; 30(39): 90341-90351, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36520285

RESUMO

The development of solar-driven transfer of atmospheric nitrogen into ammonia is one of the green and sustainable strategies in industrial ammonia production. Nickel-titanium-layered double hydroxide (NiTi-LDH) was synthesised using the soft-chemical process for atmospheric nitrogen fixation application under photocatalysis in an aqueous system. NiTi-LDH was investigated using advanced characterisation techniques and confirmed the potential oxygen vacancies and/or surface defects owing to better photocatalytic activity under the solar spectrum. It also exhibited a bandgap of 2.8 eV that revealed its promising visible-light catalytic activities. A maximum of 33.52 µmol L-1 aqueous NH3 was obtained by continuous nitrogen (99.9% purity) supply into the photoreactor under an LED light source. Atmospheric nitrogen supply (≈78%) yielded 14.67 µmol L-1 aqueous NH3 within 60 min but gradually reduced to 3.6 µmol L-1 at 330 min. Interestingly, in weak acidic pH, 20.90 µmol L-1 NH3 was produced compared to 11.51 µmol L-1 NH3 in basic pH. The application of NiTi-LDH for visible-light harvesting capability and photoreduction of atmospheric N2 into NH3 thereby opens a new horizon of eco-friendly NH3 production using natural sunlight as alternative driving energy.


Assuntos
Amônia , Titânio , Níquel , Nitrogênio , Água , Hidróxidos
18.
Environ Sci Pollut Res Int ; 30(56): 118410-118417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910375

RESUMO

This paper evaluates the adsorption mechanism of perfluorooctanoic carboxylic acid (PFCA) and heptadecafluorooctane sulfonic acid (HFOSA) on magnetic chitosan for the first time via a statistical physics modeling. Magnetic chitosan (MC-CoFe2O4) was produced from shrimp wastes and used in standard batch adsorption systems to remove PFCA and HFOSA. The experimental isotherms indicated that the maximum adsorption capacities ranged from 14 to 27.12 mg/g and from 19.16 to 45.12 mg/g for PFCA and HFOSA, respectively, where an exothermic behavior was observed for both compounds. The adsorption data were studied via an advanced model hypothesizing that a multilayer process occurred for these adsorption systems. This theoretical approach indicated that the total number of formed layers of PFCA and HFOSA adsorbates is about 3 (Nt = 2.83) at high temperatures (328 K) where a molecular aggregation process was noted during the adsorption. The maximum saturation-multilayer adsorption of PFCA and HFOSA on magnetic chitosan was 30.77 and 50.26 mg/g, respectively, and the corresponding adsorption mechanisms were successfully investigated. Two energies were responsible for the formed adsorbate layer directly on the surface and the vertical layers were computed and interpreted, reflecting that physical interactions were involved to bind these molecules on the adsorbent surface at different temperatures where the calculated adsorption energies ranged from 14 to 31 kJ/mol. Overall, this work provides theoretical insights to understand the adsorption mechanism of PFCA and HFOSA using the statistical physics modeling and its results can be used to improve the adsorbent performance for engineering applications.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Fenômenos Magnéticos , Ácidos Sulfônicos , Cinética , Concentração de Íons de Hidrogênio
19.
Environ Sci Pollut Res Int ; 29(39): 58405-58428, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35754080

RESUMO

Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Humanos , Solo , Águas Residuárias , Água , Poluentes Químicos da Água/análise
20.
Environ Sci Pollut Res Int ; 28(4): 4443-4451, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944861

RESUMO

In the present work, we studied the NH3 and H2S odor fluxes between the exposed working area and the HDPE covering film holes of the daily overlay in an actual landfill site with a daily operating area of 1600 m2 in Hangzhou, China. We showed that the odors were released from the membrane pores and the average concentrations of NH3 and H2S release reached 109.6 ± 56.6 and 86.0 ± 31.1 mg/m2/s, respectively. These concentrations are 43.8 and 57.3 times the exposed working surface. Furthermore, mathematical modeling based on the total amount of odor release revealed that there was a linear positive correlation between the total odor amount and the landfill operation area. However, the maximum number of film holes allowed on the covering layer has nothing to do with the working area and exposed working time, which is mainly determined by the HDPE film width in terms of ensuring the deodorizing effect of the covering operation. If the HDPE film with a width of more than 4 m is used, the number of film holes allowed within 100 m is more than 8. Therefore, in order to reduce the odor, the appropriate film width should be selected according to the actual operating conditions such as the mechanical operation level at the time of welding, the design of the landfill site, and the operational norms. This study explores the effect of film hole quantity of the daily cover in the landfill on the odor release from the landfill, which can provide an important reference for the design, operation, and decision-making of the daily cover operation of the sanitary landfill.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , China , Odorantes/análise , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA