Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 244(2): 694-707, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39166427

RESUMO

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.


Assuntos
Embriófitas , Transferência Genética Horizontal , Genes de Plantas , Guanina , Íntrons , Embriófitas/genética , Íntrons/genética , Guanina/metabolismo , Filogenia , Adaptação Fisiológica/genética , Genoma de Planta , Evolução Molecular
2.
Ann Bot ; 130(2): 245-263, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35789248

RESUMO

BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.


Assuntos
Cardamine , Teorema de Bayes , Cardamine/genética , Filogenia , Poliploidia , Reprodução
3.
Appl Plant Sci ; 5(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28337395

RESUMO

PREMISE OF THE STUDY: Polymorphic microsatellite markers were developed for Smilax sieboldii (Smilacaceae), a member of the S. hispida group with a biogeographic disjunction between eastern Asia and North America, to study the phylogeography and incipient speciation of this species and its close relatives. METHODS AND RESULTS: Transcriptome sequencing produced 47,628 unigenes. Seventeen loci were developed from 122 randomly selected primer pairs. Polymorphism and genetic variation were evaluated for 68 accessions representing five populations of S. sieboldii. The number of alleles per locus ranged from four to 18; the expected heterozygosity ranged from 0.59 to 0.92. Twelve loci were successfully amplified in five related species: S. scobinicaulis, S. californica, S. hispida, S. moranensis, and S. jalapensis. CONCLUSIONS: These novel expressed sequence tag-derived microsatellite markers will facilitate further population genetic research of S. sieboldii and its close allies of the S. hispida group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA