Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37182788

RESUMO

Desiccation is a stressful situation that decapods often experience during live transportation. This study investigated the effects of low-temperature aerial exposures (LTAEs) (dry exposure (DL) and moist exposure (ML) at 6 °C) and re-immersion on the antioxidative and immune responses and hepatopancreatic histopathology in P. clarkii. Compared to the control group (normally feeding at 24.0 °C water temperature), the crayfish under LTAEs showed overall severe hepatopancreatic oxidative damage, with significantly increased malondialdehyde (MDA) contents and significantly reduced total antioxidant capacity (T-AOC), and oxidant damage was not fully recovered even after 12 h of re-immersion; the expression of hsp70 was significantly increased within 24-48 h of stress and re-immersion. The activity of hemolymphatic acid phosphatase (ACP) was significantly increased during 24-48 h of the stress and at 12 h of re-immersion; the activity of aspartic aminotransferase (AST) and alanine aminotransferase (ALT) was significantly increased throughout the experiment; and the gene expression of proPO or TLR was significantly increased during 12-48 h of the stress. Severe histopathological changes (lumen dilatation, vacuolation of epithelial cells and reduced cell numbers) were observed in hepatopancreas at 48 h of stress and 12 h of re-immersion. These results indicated that 48 h of low-temperature aerial exposure stress stimulated the non-specific immunity but adversely affected the antioxidation and hepatopancreatic histomorphology of P. clarkii, whereas 12 h of re-immersion was not sufficient to restore crayfish from stress to a normal state.


Assuntos
Antioxidantes , Astacoidea , Animais , Antioxidantes/metabolismo , Astacoidea/fisiologia , Temperatura , Estresse Oxidativo , Temperatura Baixa , Imunidade Inata
2.
Fish Shellfish Immunol ; 131: 624-630, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330872

RESUMO

Nitrite is the major environmental pollutant in the freshwater aquaculture environment, which has a negative impact on aquatic species growth. Currently, we know that the main way nitrite enters crustaceans is through their gills. In this study, a total of 96 h acute nitrite stress (60 mg/L) experiments were conducted, and the impact of the serum biochemical parameters, gill oxidase activity and oxidative-related gene expression of red swamp crayfish were evaluated. After exposure to nitrite for 0, 6, 12, 24, 48, and 96 h, hemolymph and gills samples were taken at each time point. In the serum, acute nitrite stress significantly increased glutamic-oxaloacetic transaminase (GOT) and alanine aminotransferase (ALT) activities after 6 h of exposure, decreased total protein (TP) and albumin (ALB) levels after 24 h and 48 h of exposure, respectively. In the gills, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were enhanced to the maximum level at 12 h, 24 h and 24 h, respectively. The contents of malondialdehyde (MDA) and lipid peroxide (LPO) were increased significantly after 12 h and 24 h exposure, respectively. In addition, the expression levels of antioxidative-related genes, including hsp70, fer and mt, were significantly upregulated in the gills after 6 h of exposure. The results indicated that acute nitrite stress changed the serum physiological status, induced oxidative stress and caused damage to gill cells in P. clarkii.


Assuntos
Astacoidea , Poluentes Químicos da Água , Animais , Astacoidea/metabolismo , Brânquias/metabolismo , Nitritos/toxicidade , Nitritos/metabolismo , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo
3.
Fish Shellfish Immunol ; 127: 891-900, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810965

RESUMO

The aim of this study was to examine the combined effects of sulfated ß-Glucan from Saccharomyces cerevisiae (sGSC) on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Four experimental diets (sGSC25, sGSC50, sGSC100 and sGSC200) with different levels of sGSC (0.025%, 0.05%, 0.1% and 0.2% in diet, respectively) were fed to juvenile crayfish (average weight: 2.5 ± 0.5 g) for 8 weeks. The control diet was given with 2000 mg/kg GSC (GSC200 group). The based control diet was given without sGSC or GSC (blank group). Each group had 3 parallel test pools, 20 crayfish were reared in each pool. At the end of the growth trial, adding dietary 0.025%-0.1% sGSC could significantly improve the growth performance, antioxidant capacity and immunity of crayfish. Compared with GSC, sGSC had a better effect at lower concentration. Higher concentration of sGSC (>0.1%) would cause some side effects. sGSC also could improve the structure of the intestinal flora and optimize the function of the flora. sGSC would increase the abundances of probiotics such as Hafnia and Acinetobacter, and decreases the abundances of maleficent bacteria such as Enterobacteriaceae. Higher concentration of sGSC (>0.1%) would increase the abundance of Aeromonas. To conclude, 0.025%-0.1% sGSC can be used as a supplement in crayfish feed to increase growth, immunity, and antioxidant capacity and improve the structure of intestinal flora. These results provided a theoretical basis for the application of sGSC instead of GSC in crayfish breeding. It will be necessary to further study the optimal concentration of sGSC in feed additives in different growth stages of crayfish in the future.


Assuntos
Microbioma Gastrointestinal , beta-Glucanas , Animais , Antioxidantes/farmacologia , Astacoidea , Melhoramento Vegetal , Saccharomyces cerevisiae , Sulfatos/farmacologia , beta-Glucanas/farmacologia
4.
Fish Shellfish Immunol ; 96: 290-296, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765791

RESUMO

Nitrite and sulfide are harmful pollutants in water ecosystems that negatively influence the survival and growth of crayfish. It is currently known that the intestine of crustaceans acts as a significant immune organ, serving as the front line of defense against diseases. In this study, we investigated how the oxidative damage parameters, antioxidant status and microbial composition of the intestine of Procambarus clarkii were influenced under acute nitrite (60 mg/L) and sulfide (18 mg/L) stress for 72 h. Compared with the control, after exposure to nitrite and sulfide stress, the production of reactive oxygen species, and the lipid peroxide and malondialdehyde contents increased in the intestines and were significantly higher after 72 h of exposure. The superoxide dismutase, catalase and glutathione peroxidase activities increased to maximum levels at 6, 24 and 12 h, respectively. These activities then decreased gradually and were significantly lower than those of the control after 48 or 72 h of exposure. In the crayfish exposed to stress, the expression of antioxidant genes including heat shock protein 70, ferritin and metallothionein increased to their maximum values at 12, 48 and 12 h, respectively. The expression levels then decreased gradually, and after 72 h, were lower than, or lacked significant differences with, the expression levels in the control. Additionally, nitrite and sulfide exposure restructured the intestinal microbial community of P. clarkii. This led to decreases in the abundance of some genera such as Citrobacter. However, the abundance of other genera, such as Shewanella and Acinetobacter, increased. Therefore, the health of P. clarkii was seriously impaired when exposed to nitrite and sulfide stress.


Assuntos
Antioxidantes/metabolismo , Astacoidea/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Nitritos/toxicidade , Sulfetos/toxicidade , Animais , Astacoidea/microbiologia , Astacoidea/fisiologia , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
5.
Fish Shellfish Immunol ; 100: 146-151, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32165247

RESUMO

High temperature is an important environmental factor that affects the survival and immunity of aquatic animals. The intestine of crustaceans is their first line of defense, and the physiological homeostasis of this organ can be influenced by high temperature stress. The red swamp crayfish Procambarus clarkii is an important commercial aquaculture species in China, but little is known about its intestinal immune response to acute heat stress. In this study, we investigated the intestinal immune response of P. clarkii individuals that were assigned to the control (25 °C) and heat stress (35 °C) groups. Biochemical assays were conducted for the oxidative stress parameters ·O2- generation capacity, lipid peroxide content, and malondialdehyde content; the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase; and the activities of the immunity-related enzymes alkaline phosphatase, acid phosphatase, and lysozyme. The relative expression level of the antioxidant genes heat shock protein 70 (hsp70), ferritin (fer), and metallothione (met) was examined by RT-PCR. Based on the data obtained, all the parameters tended to increase, peak and then decrease with time, and were significantly different between the two groups (P < 0.05). These findings reveal that acute heat stress adversely affects the antioxidant status and immune function in the P. clarkii intestine. They lay the groundwork for future studies on the effect of rising water temperatures on immune function and survival of this species.


Assuntos
Astacoidea/imunologia , Resposta ao Choque Térmico/imunologia , Temperatura Alta , Imunidade Inata , Intestinos/imunologia , Animais , Aquicultura , Ferritinas/genética , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Intestinos/patologia , Metalotioneína/genética , Estresse Oxidativo
6.
Fish Shellfish Immunol ; 60: 59-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27856326

RESUMO

In mammals, interferon regulatory factor 4 (IRF4) plays an important role in the process of development and differentiation of B cells, T cells and dendritic cells. It can regulate immune pathway through IRF5, MyD88, IL21, PGC1α, and NOD2. In the present study, we investigated the expression pattern of IRF4 paralogues and these related genes for the first time in teleosts. The results showed that these genes were all expressed predominantly in known immune tissues while IRF5 was also relatively highly expressed in muscle. IRF4b, IL21, MyD88, IRF5 and NOD2 showed maternal expression in the oocyte and the higher expression of IRF4a, Mx and PGC1α before hatching might be involved in the embryonic innate defense system. Zebrafish embryonic fibroblast (ZF4) cells were infected with GCRV and SVCV. During GCRV infection, the expression of Mx was significantly up-regulated from 3 h to 24 h, reaching the highest level at 12 h (101.5-fold over the controls, P < 0.001). And the expression of IRF4a was significantly up-regulated from 3 h to 48 h, reaching the highest level at 12 h (13.75-fold over the controls, P < 0.001). While the expression of IRF4b was only slightly up-regulated at 12 h and 24 h (3.39-fold, 1.93-fold) above control levels, respectively. Whereas the expression of Mx was significantly up-regulated during SVCV infection from 1 h to 48 h, reaching the highest level at 24 h (11.49-fold over the controls, P < 0.001). IRF4a transcripts were significantly up-regulated from 6 h to 24 h, reaching the highest level at 24 h (41-fold over the controls, P < 0.01). IRF4b only showed a slightly up-regulation by SVCV at 24 h (3.2-fold over the controls, P < 0.01). IRF4a and IRF4b displayed a distinct tissue expression pattern, embryonic stages expression and inducible expression in vivo and in vitro, suggesting that IRF4 paralogues might play different roles in immune system.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata/genética , Fatores Reguladores de Interferon/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Linhagem Celular , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Fatores Reguladores de Interferon/metabolismo , Filogenia , Reoviridae/fisiologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Análise de Sequência de DNA , Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/metabolismo
7.
Aquat Toxicol ; 265: 106768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041968

RESUMO

The red swamp crayfish (Procambarus clarkii) is an important farming species in China and there is a high degree of overlap between the main crayfish production areas and areas contaminated with the heavy metal lead (Pb), thus putting crayfish farming at potential risk of Pb contamination. To assess the toxic effects of Pb on crayfish, in this study they were exposed to different concentrations of Pb (0, 0.1, 1, 10, 50 mg/L) for 72 h, and 0.1 mg/L represents the level of Pb in the contaminated water. Histomorphology and activities of antioxidant or immune-related enzymes suggest that the damage of Pb to the hepatopancreas and intestine was dose- and time-dependent, with the intestine being more sensitive to Pb than the hepatopancreas. Notably, after a short period (24 h) of stress at low concentrations (0.1 mg/L) of Pb, the malondialdehyde (MDA) content and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GSH-Px) in the intestine of crayfish showed significant changes, indicating that low concentrations of Pb were also highly detrimental to crayfish. High-throughput sequencing of the intestinal microbial community indicated that Pb exposure led to a disturbance in the relative abundance of intestinal bacteria, increasing the abundance of pathogenic bacteria (Bosea, Cloacibacterium, Legionella spp.) and decreasing the abundance of potentially beneficial bacteria (Chitinibacter, Chitinilyticum, Paracoccus, Microbacterium, Demequina, and Acinetobacter spp.). In conclusion, Pb damages the hepatopancreas and intestinal barrier of crayfish, leading to the destruction of their anti-stress ability and immune response, and at the same time disrupts the homeostasis of intestinal microbes, resulting in adverse effects on the gut. This study contributed to the assessment of the ecotoxicity of the heavy metal Pb to the crustacean aquatic animals.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Astacoidea , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce
8.
Gene ; 678: 79-89, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30075196

RESUMO

Melanocortin-4 receptor (MC4R) plays critical roles in the regulation of various physiological processes, such as energy homeostasis, reproduction and sexual function, cardiovascular function, and other functions in mammals. Although the functions of the MC4R in fish have not been extensively studied, the importance of MC4R in regulation of piscine energy expenditure and sexual functions is emerging. Swamp eel (Monopterus albus) is an economically and evolutionarily important fish widely distributed in tropics and subtropics. We cloned swamp eel mc4r (mamc4r), consisting of a 981 bp open reading frame encoding a protein of 326 amino acids. The sequence of maMC4R was homologous to those of several teleost MC4Rs. Phylogenetic and chromosomal synteny analyses showed that maMC4R was closely related to piscine MC4Rs. qRT-PCR revealed that mc4r transcripts were highly expressed in brain and gonads of swamp eel. The maMC4R was further demonstrated to be a functional receptor by pharmacological studies. Four agonists, α-melanocyte stimulating hormone (α-MSH), ß-MSH, [Nle4, D-Phe7]-α-MSH (NDP-MSH), and adrenocorticotropin, could bind to maMC4R and induce intracellular cAMP production dose-dependently. Small molecule agonist THIQ allosterically bound to maMC4R and exerted its effect. Similar to other fish MC4Rs, maMC4R also exhibited significantly increased basal activity compared with that of human MC4R. The high basal activity of maMC4R could be decreased by inverse agonist ML00253764, suggesting that maMC4R was indeed constitutively active. The availability of maMC4R and its pharmacological characteristics will facilitate the investigation of its function in regulating diverse physiological processes in swamp eel.


Assuntos
Clonagem Molecular/métodos , Receptor Tipo 4 de Melanocortina/genética , Smegmamorpha/genética , Tetra-Hidroisoquinolinas/farmacologia , Triazóis/farmacologia , alfa-MSH/farmacologia , Animais , Química Encefálica , Proteínas de Peixes/agonistas , Proteínas de Peixes/genética , Gônadas/química , Fases de Leitura Aberta , Filogenia , Receptor Tipo 4 de Melanocortina/agonistas , Distribuição Tecidual
9.
Artigo em Inglês | MEDLINE | ID: mdl-19854290

RESUMO

This study examined the gene structures and expression of trypsinogens, as well as the trypsin activities of the grass carp Ctenopharyngodon idellus (herbivorous) and the topmouth culter Culter alburnus (carnivorous), which are commercially important freshwater species of the family Cyprinidae in China. Isolated full-length trypsinogen cDNA clones were 869 bp and 857 bp. The deduced amino acid sequences were 242aa and 247aa long, both containing the highly conserved residues essential for serine protease catalytic and conformational maintenance. The results from isoelectric and phylogenetic analyses suggest that grass carp trypsinogen is grouped with teleost trypsinogen group I, while topmouth culter trypsinogen is grouped with group II. The expression pattern of trypsinogen mRNA was similar between these two species, appearing 2 days post-hatching (dph) and reaching peaks at 11 and 23 dph. The trypsin-specific activities in both species were detected 2 dph and reached the major peaks at 8 dph, however the minor peaks were observed at 20 dph in the grass carp and 17 dph in the topmouth culter. The trypsin-specific activity was significantly higher in the grass carp than in the topmouth culter, which may be attributed to the nature of their different nutritional habits.


Assuntos
Carpas/genética , Cyprinidae/genética , Proteínas de Peixes/genética , Tripsinogênio/genética , Sequência de Aminoácidos , Animais , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Clonagem Molecular , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/metabolismo , DNA Complementar/química , DNA Complementar/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tripsina/metabolismo , Tripsinogênio/classificação , Tripsinogênio/metabolismo
10.
Ying Yong Sheng Tai Xue Bao ; 18(5): 1167-70, 2007 May.
Artigo em Zh | MEDLINE | ID: mdl-17650877

RESUMO

Starvation is a major environmental stress, which has a broad effect on the physiology and ecology of aquatic animals. In this study, Monopterus albus was starved for 30 days at (20 +/- 0.5) degrees C, and the activities of protease, trypsin, amylase and lipase in its digestive organs were measured on the 0, 3rd, 5th, 10th, 15th, 20th, and 30th day of starvation. The results showed that starvation had definite effects on the activities of all test enzymes. With the prolongation of starvation, the activities of test enzymes decreased, which was most significant when the fish was starved for 5-10 days. After 10 days of starvation, the decreasing trend of the enzyme activities became less obvious.


Assuntos
Enzimas/metabolismo , Peptídeo Hidrolases/metabolismo , Smegmamorpha/fisiologia , Inanição , Tripsina/metabolismo , Amilases/metabolismo , Animais , Fenômenos Fisiológicos do Sistema Digestório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA