RESUMO
A novel Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated pc2-12T, was isolated from the rhizosphere soil of the herb Pyrola calliantha collected from arid areas of Tibet. The strain grew most vigorously with 1â% (w/v) NaCl, at pH 7.0 and at 25 °C. According to the results of 16S rRNA gene sequence analysis, pc2-12T was closely related to the members of the genus Chryseobacterium, with highest levels of sequence similarity to Chryseobacterium viscerum 687B-08T (98.42â%), Chryseobacterium oncorhynchi 701B-08T (98.11â%) and Chryseobacterium ureilyticum DSM 18017T (97.98â%). The average nucleotide identity values between pc2-12T and C. viscerum 687B-08T, C. oncorhynchi 701B-08T and C. ureilyticum DSM 18017T were 79.71, 79.49 and 79.26â%, respectively. The in silico DNA-DNA hybridisation values between pc2-12T and C. viscerum 687B-08T, C. oncorhynchi 701B-08T and C. ureilyticum DSM 18017T were 23.30, 23.00 and 22.90â%, respectively. The draft genome sequence of pc2-12T was 4.64 Mb long, with DNA G+C content of 37.0 mol%. The fatty acids contained in the cells of pc2-12T were mainly composed of iso-C15â:â0, iso-C17â:â0 3-OH and summed feature 3 (C16â:â1ω6c and/or C16â:â1ω7c). The main polar lipid was phosphatidylethanolamine. MK-6 was the sole respiratory quinone. On the basis of the results of analysis of all the data described, pc2-12T is considered to represent a novel species of the genus Chryseobacterium, for which the name Chryseobacterium pyrolae sp. nov., is proposed. The type strain is pc2-12T (=GDMCC 1.3256T= JCM 35712T).
Assuntos
Chryseobacterium , Pyrola , DNA Bacteriano/genética , Rizosfera , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , Ácidos Graxos/química , Filogenia , Técnicas de Tipagem Bacteriana , Vitamina K 2/químicaRESUMO
A Gram-stain-negative, motile, rod-shaped bacterium, designated strain LAM2020T, was isolated from a sulfonylurea herbicides-degrading bacterial consortium. The optimal temperature and pH for the growth of strain LAM2020T were 30 °C and 7.0, respectively. Strain LAM2020T formed a distinct phylogenetic subclade within the genus Cedecea in the phylogenetic trees built with 16S rRNA gene sequences and shared the highest similarity with Cedecea davisae DSM 4568T (98.4%). The values of digital DNA-DNA hybridization and average nucleotide identity (ANI) based on the genome sequences between LAM2020T and C. davisae DSM 4568T were 22.7% and 80.0%, respectively. It contained 54.0 mol% of G + C in the genomic DNA. The major cellular fatty acids of strain LAM2020T were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The major polar lipids present in strain LAM2020T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. The respiratory quinone of strain LAM2020T was ubiquinone-8 and ubiquinone-7. Based on the phenotypic characteristics, chemotaxonomic data and genotypic analyses, strain LAM2020T should be classified as a novel species of genus Cedecea, for which the name Cedecea sulfonylureivorans sp. nov. is proposed. The type strain is LAM2020T (= GDMCC 1.2363T = JCM 34640T).
Assuntos
Herbicidas , Ubiquinona , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Fosfolipídeos , Análise de Sequência de DNA , Ácidos Graxos , Bactérias/genéticaRESUMO
A Gram-stain-negative, aerobic, rod-shaped and motile bacterium, named LAMW06T, was isolated from greenhouse soil in Beijing, China. In the 16S rRNA gene sequence comparison, strain LAMW06T had the highest similarity with Pseudomonas cuatrocienegasensis 1NT. Phylogenetic analysis based on the 16S rRNA and three housekeeping gene sequences (gyrB, rpoB and rpoD) indicated that strain represented a member of the genus Pseudomonas. The genome sequence size of the isolate was 5.5 Mb, with a DNA G + C content of 63.5 mol%. The average nucleotide identity and DNA-DNA hybridization values between strain LAMW06T and closely related members of Pseudomonas borbori R-20821T, Pseudomonas taeanensis MS-3T and P. cuatrocienegasensis 1NT were 90.9%, 82.4%, 81.5% and 43.0%, 25.9%, 24.6% respectively. The major fatty acids contained summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C18:1 ω7c and C16:0. The primary respiratory quinone was ubiquinone-9. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, six aminophospholipids, six phospholipids, one aminolipid and one glycolipid. According to the genotypic, phylogenetic and chemotaxonomic data, strain LAMW06T represents a novel species within the genus Pseudomonas, for which the name Pseudomonas tumuqii sp. nov. is proposed. The type strain is LAMW06T (= GDMCC 1.2003T = KCTC 72829T).
Assuntos
Pseudomonas , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A novel Gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7116T was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil from Xinjiang. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain LAM7116T was closely related to the members of the genus Microbacterium, with the highest similarity to Microbacterium flavescens DSM 20643T (98.48%) and Microbacterium kitamiense Kitami C2T (98.48%). Strain LAM7116T formed a distinct subclade with M. flavescens DSM 20643T within the genus Microbacterium in the 16S rRNA gene phylogenetic trees. The genomic DNA G + C content of LAM7116T was 69.9 mol%. The digital DNA-DNA hybridization (dDDH) value between strain LAM7116T and M. flavescens DSM 20643T was 27.20%. The average nucleotide identity (ANI) value was 83.96% by comparing the draft genome sequences of strain LAM7116T and M. flavescens DSM 20643T. The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C17:0, and iso-C16:0. The respiratory menaquinones of strain LAM7116T were MK-13 and MK-14. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified lipid, and an unidentified glycolipid. The peptidoglycan contained the amino acids glycine, lysine, alanine, and glutamic acid. Based on the phenotypic characteristics and genotypic analyses, we consider that strain LAM7116T represents a novel species, for which the name Microbacterium sulfonylureivorans sp. nov. was proposed. The type strain is LAM7116T (= CGMCC 1.16620T = JCM 32823T). Strain LAM7116T secreted auxin IAA and grew well in Ashby nitrogen-free culture medium. Genomic results showed that strain LAM7116T carried the nitrogenase iron protein (nifU and nifR3) gene, which indicated that strain LAM7116T has the potential to fix nitrogen and promote plant growth. At same time, strain LAM7116T can degrade nicosulfuron (a kind of sulfonylurea herbicides) using glucose as carbon source. Microbacterium sulfonylureivorans sp. nov. LAM7116T is a potential candidate for the biofertilizers of organic agriculture areas, and may possess potential to be used in bioremediation of nicosulfuron-contaminated environments.
Assuntos
Herbicidas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Microbacterium , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated LAMRS1T, was isolated from a soil sample collected in Hebei Province, PR China. Strain LAMRS1T was able to grow optimally in the presence of 0.5â% (w/v) NaCl, at pH 7.5 and at 30 °C. On the basis of 16S rRNA gene sequence analysis, strain LAMRS1T was closely related to members of the genus Chryseobacterium, with highest levels of sequence similarity to Chryseobacterium soli DSM 19298T (97.9â%), Chryseobacterium soldanellicola DSM 17072T (97.6%) and Chryseobacterium piperi CTMT (97.5â%). The average nucleotide identity and digital DNA-DNA hybridization values between LAMRS1T and the closely related species of C. soli DSM 19298T, C. soldanellicola DSM 17072T and C. piperi CTMT were 78.1, 78.2 and 80.7â%, and 21.7, 22.0 and 23.7â%, respectively. The draft genome sequence of LAMRS1T was 4.61 Mb, with DNA G+C content of 36.2 mol%. The major isoprenoid quinone was menaquinone-6 and iso-C15â:â0, iso-C17â:â0 3-OH and summed feature 3 (C16â:â1 ω6c and/or C16â:â1 ω7c) constituted the major cellular fatty acids. The main polar lipids were phosphatidylethanolamine, four aminolipids, three glycolipids and seven unidentified lipids. On the basis of evidence presented in this study, strain LAMRS1T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium subflavum sp. nov. is proposed. The type strain is LAMRS1T (=JCM 33868T=KCTC 72823T).
Assuntos
Chryseobacterium , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Vitamina K 2/químicaRESUMO
A Gram-stain-positive, aerobic, motile, rod-shaped bacterium, designated strain LAM9210T, was isolated from a saline soil sample collected from Lingxian County, Shandong Province, PR China. Analysis of the 16S rRNA gene sequence of the isolate revealed highest sequence similarities to the type strain of Sporosarcina pasteurii NCIMB 8841T (97.6â% sequence similarity). The genomic G+C content was 40.4 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain LAM9210T and the type strain of the most closely related species S. pasteurii NCIMB 8841T were 73.6 and 20.6â%, respectively. Strain LAM9210T was found to grow at 10-40 °C (optimum, 30 °C), at pH 6.0-10.0 (optimum, pH 9.0) and with 0-6â% (w/v) NaCl (optimum, 0.5â%), respectively. The major fatty acids were anteiso-C15â:â0 and iso-C14â:â0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified phospholipid. Menaquinone-7 was detected as the predorminant respiratory quinone. Strain LAM9210T contained glycine, lysine, alanine and glutamic acid as the diagnostic amino acids in the cell-wall peptidoglycan. On the basis of phenotypic, phylogenetic and genotypic data, strain LAM9210T is considered to represent a novel species of the genus Sporosarcina, for which the name Sporosarcina jiandibaonis sp. nov. is proposed. The type strain is LAM9210T (=CGMCC 1.18607T=GDMCC 1.2002T=JCM 32514T).
Assuntos
Filogenia , Microbiologia do Solo , Sporosarcina , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Solo/química , Sporosarcina/classificação , Sporosarcina/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A novel Gram-stain-positive, aerobic, non-motile and rod-shaped bacterium, designated strain NC76-1T, was isolated from soil from a field that had undergone seven years continuous maize cropping from Liuba town located in Zhangye city, Gansu province, PR China. Colonies of strain NC76-1T were white, opaque and circular with a convex shape. The isolate was found to be able to grow at 10-40 °C (optimum 30 °C), pH 6.0 to 12.0 (optimum 7.0-8.0) and with 0-5.0â% (w/v) NaCl (optimum 0%). On the basis of the results of 16S rRNA gene sequence analysis, the strain fell within the clade of the genus Leucobacter, showing the highest sequence similarities with Leucobacter iarius 40T (97.4%), Leucobacter aridicollis CIP 108388T (97.0%), Leucobacter chromiireducens subsp. solipictus TAN 31504T (96.7%) and Leucobacter denitrificans M1T8B10T (96.7%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between NC76-1T and its closest relatives, L. iarius 40T, L. aridicollis CIP 108388T, L. chromiireducens subsp. solipictus TAN 31504T and L. denitrificans M1T8B10T were ≤73.5â% and 20.3%, respectively. The genomic DNA G+C content of NC76-1T was 61.5 mol%. It presented MK-11 as the predominant menaquinone. The major cellular fatty acids were anteiso-C15â:â0 (49.2 %) and iso-C16â:â0 (35.7%). The major polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminoglycolipid, five glycolipid and one unidentified lipids. The cell wall amino acids were 2,4-diaminobutyric acid, alanine, glutamic acid, glycine and threonine. On the basis of the phylogenetic, phenotypic and chemotaxonomic characteristics, strain NC76-1T is concluded to represent a novel species within the genus Leucobacter, for which the name Leucobacter chinensis sp. nov. is proposed. The type strain is NC76-1T (GDMCC 1.2286T= JCM 34651T).
Assuntos
Actinomycetales , Zea mays , Actinobacteria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , SoloRESUMO
A gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7117T, was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil. The optimal temperature and pH for the growth of strain LAM7117T were 35 °C and 7.5, respectively. Strain LAM7117T could grow in the presence of NaCl with concentration up to 9% (w/v). Strain LAM7117T formed a distinct phylogenetic subclade within the genus Arthrobacter in the phylogenetic trees built with 16S rRNA gene sequences and shared the highest similarity with A. crystallopoietes JCM 2522T (97.7%). The values of digital DNA-DNA relatedness and Avery Nucleotide Identity based on the genome sequences between LAM7117T and A. crystallopoietes JCM 2522T were 21.4 and 77.4%, respectively. The genomic DNA G + C content was 65.9 mol%. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The cell wall peptidoglycan contained the amino acids as glycine, lysine, alanine and glutamic acid. The major polar lipids present in strain LAM7117T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl inositol, two unidentified glycolipids and one unidentified lipid. The predominant menaquinones of strain LAM7117T were MK-8 and MK-9. Based on the phenotypic characteristics, chemotaxonomic data and genotypic analyses, strain LAM7117T should be classified as a novel species of genus Arthrobacter, for which the name Arthrobacter sulfonylureivorans sp. nov. is proposed. The type strain is LAM7117T (= JCM 32824T = CGMCC 1.16681T).
Assuntos
Arthrobacter/classificação , Filogenia , Microbiologia do Solo , Arthrobacter/genética , Arthrobacter/isolamento & purificação , Arthrobacter/metabolismo , Composição de Bases , Betula , Ácidos Graxos/química , Herbicidas , Peptidoglicano/análise , RNA Ribossômico 16S/genética , Solo/química , Especificidade da Espécie , TemperaturaRESUMO
A Gram-stain-negative, aerobic, motile, short-rod-shaped bacterium with nicosulfuron-degrading ability, designated strain LAM1902T, was isolated from a microbial consortium enriched with nicosulfuron as a sole nitrogen and energy source. The optimal temperature and pH for growth of strain LAM1902T were 30 °C and pH 6.0, respectively. Strain LAM1902T could grow in the presence of NaCl with concentration up to 4.0â% (w/v). Comparative analysis of 16S rRNA gene sequences revealed that LAM1902T was closely related to the members of the family Pseudomonadaceae to the genus Pseudomonas, with the highest similarity to Pseudomonas nitroreducens DSM 14399T (99.6â%), Pseudomonas nitritireducens WZBFD3-5A2T (99.3â%) and Pseudomonas panipatensis Esp-1T (98.8â%). Multi-locus sequence analysis based on both concatenated sequences of the 16S rRNA gene and three housekeeping genes (gyrB, rpoB and rpoD) further confirmed the intrageneric phylogenetic position of strain LAM1902T. The genomic DNA G+C content of LAM1902T was 64.8 mol%. The low values of in silico DNA-DNA hybridization (less than 43.7â%) and average nucleotide identity (less than 90.9â%) also showed that the strain was distinctly different from known species of the genus Pseudomonas. The major fatty acids were C16â:â0, C17â:â0 cyclo and anteiso C15â:â0. Ubiquinone Q-9 was detected as the predorminant respiratory quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. Based on phylogenetic, phenotypic and chemotaxonomic analyses and genome comparisons, we conclude that strain LAM1902T represents a novel species, for which the name Pseudomonas nicosulfuronedens sp. nov. is proposed. The type strain is LAM1902T (=JCM 33860T=KCTC 72830T).
Assuntos
Consórcios Microbianos , Filogenia , Pseudomonas/classificação , Piridinas/metabolismo , Compostos de Sulfonilureia/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
A Gram-staining positive, aerobic, non-motile, rod-shaped bacterium, designated strain LAM7114T, was isolated from soil sample collected from a birch forest in Xinjiang Uygur Autonomous Region, China. The optimal temperature and pH for the growth of strain LAM7114T were 30 °C and 7.0, respectively. Strain LAM7114T could grow in the presence of NaCl up to 10% (w/v). Comparative analysis of the 16S rRNA gene sequences revealed that LAM7114T was closely related to the members of the family genus Streptomyces, with the highest similarity to Streptomyces urticae NEAU-PCY-1T (98.3%) and Streptomyces fildesensis GW25-5T (98.2%). The genomic G + C content was 70.0 mol%. The DNA-DNA hybridization values between strain LAM7114T and S. urticae CCTCC AA 2017015T, S. fildesensis CGMCC 4.5735T were 32.5 ± 1.8% and 27.5 ± 2.6%, respectively. The cell wall contained LL-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan. The whole-cell hydrolysates included glucose and mannose. The major fatty acids were anteiso-C15:0, iso-C15:0 and iso-C16:0. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, three unidentified aminophospholipids, three unidentified phospholipids, and an unidentified aminolipid. Based on the phenotypic characteristics and genotypic analyses, we propose that strain LAM7114T represents a novel species in the genus Streptomyces, for which the name Streptomyces soli sp. nov. is proposed. The type strain is LAM7114T (= CGMCC 4.7581T = JCM 32822T).
Assuntos
Betula/microbiologia , Florestas , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Genótipo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Streptomyces/genética , Streptomyces/isolamento & purificaçãoRESUMO
A Gram-stain-positive, aerobic bacterium, designated CPCC 204705T, was isolated from a desert soil sample, collected from the Badain Jaran desert. Growth of strain CPCC 204705T was observed at pH 6.0-8.0 and 15-37 °C, with optimal growth at 28 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CPCC 204705T belonged to the genus Cellulomonas, showing the highest similarity (98.54 %) of 16S rRNA gene sequence to Cellulomonas oligotrophica JCM 17534T. The peptidoglycan type was A4ß, containing d-ornithine and d-glutamic acids as diagnostic amino acids. Rhamnose and galactose were detected in the whole-cell hydrolysate as diagnostic sugars. The major cellular fatty acids were anteiso-C15â:â0, anteiso-C15â:â1A, C14â:â0 and C16â:â0. The major menaquinone was MK-9 (H4) and the polar lipid system contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, one unidentified lipid, one unidentified aminolipid and two unidentified aminophospholipids. The DNA-DNA hybridization value between strain CPCC 204705T and C. oligotrophica JCM 17534T was 7.1±0.4â%, and the value of average nucleotide identity between these two strains was 79.8â%. The DNA G+C content of strain CPCC 204705T was 75.4 mol%. Based on the results of physiological experiments, chemotaxonomic data, phylogenetic analysis and DNA-DNA hybridization value, strain CPCC 204705T should be classified as a novel Cellulomonas species. The name Cellulomonas telluris sp. nov. is proposed, with strain CPCC 204705T (=DSM 105430T=KCTC 39974T) as the type strain.
Assuntos
Celulase , Cellulomonas/classificação , Clima Desértico , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cellulomonas/enzimologia , Cellulomonas/isolamento & purificação , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A Gram-stain-positive, motile, rod-shaped bacterium, designated strain LAM7113T, was isolated from soil sample collected from a birch forest in Xinjiang Uygur Autonomous Region, PR China. Strain LAM7113T grew optimally at pH 8.0, 30 °C and in the presence of 1.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LAM7113T was closely related to members of the genus Paenibacillus, with the highest similarity to Paenibacillus baekrokdamisoli Back-11T (96.2 %). The genomic DNA G+C content was 43.4 mol%. The values of average nucleotide identity and DNA-DNA hybridization were 66.1 and 27.0 %, respectively, by comparing the draft genome sequences of strain LAM7113T and P. baekrokdamisoli Back-11T. Anteiso-C15 : 0 and iso-C15 : 0 were identified as the major cellular fatty acids. Menaquinone-7 was detected as the predominant respiratory quinone. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, three unidentified aminophospholipids, three unidentified glycolipids, one unidentified phospholipid and two unknown polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM7113T is proposed to represent a novel species of the genus Paenibacillus with the name Paenibacillus solisilvae sp. nov. The type strain is LAM7113T (=CGMCC 1.16619T=JCM 32513T).
Assuntos
Betula , Paenibacillus/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Glicolipídeos/química , Hibridização de Ácido Nucleico , Paenibacillus/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
BACKGROUND: Nowadays, microbial infections have caused increasing economic losses in aquaculture industry and deteriorated worldwide environments. Many of these infections are caused by opportunistic pathogens through cell-density mediated quorum sensing (QS). The disruption of QS, known as quorum quenching (QQ), is an effective and promising way to prevent and control pathogens, driving it be the potential bio-control agents. In our previous studies, AHL lactonase AiiK was identified with many characteristics, and constitutive expression vector pELX1 was constructed to express heterologous proteins in Lactobacillus casei MCJΔ1 (L. casei MCJΔ1). In this study, recombinant strain pELCW-aiiK/L. casei MCJΔ1 (LcAiiK) and wild-type Aeromonas hydrophila (A. hydrophila) were co-cultured to test the QQ ability of LcAiiK against A. hydrophila. RESULTS: A cell wall-associated expression vector pELCW for L. casei MCJΔ1 was constructed. Localization assays revealed that the expressed AiiK was anchored at the surface layer of LcAiiK via vector pELCW-aiiK. LcAiiK (OD600 = 0.5) degraded 24.13 µM of C6-HSL at 2 h, 40.99 µM of C6-HSL at 12 h, and 46.63 µM of C6-HSL at 24 h. Over 50% LcAiiK cells maintained the pELCW-aiiK plasmid after 15 generations of cultivation without erythromycin. Furthermore, LcAiiK inhibited the swimming motility, extracellular proteolytic activity, haemolytic activity and biofilm formation of A. hydrophila AH-1 and AH-4. CONCLUSION: The AHL lactonase AiiK is firstly and constitutively expressed at the surface layer of L. casei MCJΔ1. LcAiiK displayed considerable AHL lactonase activity and great QQ abilities against A. hydrophila AH-1 and AH-4 by attenuating their QS processes instead of killing them. Therefore, the LcAiiK can be exploited as an anti-pathogenic drug or a bio-control agent to control the AHL-mediated QS of pathogenic bacteria.
Assuntos
Aeromonas hydrophila/metabolismo , Hidrolases de Éster Carboxílico/genética , Lacticaseibacillus casei/genética , Percepção de Quorum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Agentes de Controle Biológico , Hidrolases de Éster Carboxílico/metabolismo , Lacticaseibacillus casei/metabolismoRESUMO
A novel actinomycete, designated strain LAM7112T, was isolated from soil sample collected from a birch forest in Xinjiang Uygur Autonomous Region, China. The new isolate was found to be able to grow at 20-45 °C (optimum: 35 °C), pH 5.0-10.0 (optimum: 7.0) and in the presence of 0-10.0% (optimum: 3.0%) (w/v) NaCl. The isolate formed very scantily irregular sporangia containing motile spores on the substrate mycelium. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolate was closely related to members of the family Micromonosporaceae, with highest similarites to Actinoplanes ferrugineus X-14695T (97.4%), Micromonospora zamorensis DSM 45600T (97.3%) and Micromonospora aurantiaca ATCC 27029T (97.3%). In the phylogenetic trees, strain LAM7112T formed a stable phylogenetic subclade within the genus Actinoplanes. The genomic DNA G + C content was 70.0 mol%. The major fatty acids (> 10%) were determined to be iso-C16:0, anteiso-C15:0 and anteiso-C17:0. The predominant menaquinones were identified as MK-9 (H2), MK-9 (H4) and MK-9 (H6). The major polar lipids were found to be diphosphatidylglycerol, phosphatidylinositol and phosphatidylethanolamine. The diagnostic amino acid of the cell wall peptidoglycan was determined to be meso-diaminopimelic acid. The diagnostic sugars in cell hydrolysates were determined to be glucose and ribose. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM7112T (= CGMCC 4.7580T = JCM 32512T) is proposed to represent the type strain of a novel species of the genus Actinoplanes, for which the name Actinoplanes solisilvae is proposed.
Assuntos
Actinoplanes , Técnicas de Tipagem Bacteriana , Betula , China , DNA Bacteriano/genética , Florestas , Micromonospora , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do SoloRESUMO
A Gram-stain-negative, motile, rod-shaped bacterium, designated CPCC 100842T, was isolated from a freshwater reservoir in south-west China. The 16S rRNA gene sequence comparison of strain CPCC 100842T with the available sequences in the GenBank database showed that the isolate was closely related to members of the family Comamonadaceae, with the highest similarities to Simplicispira metamorpha DSM 1837T (98.05â%), Simplicispira limi KCTC 12608T (97.86â%), Simplicispira psychrophila LMG 5408T (97.04â%) and Simplicispira piscis JCM 19291T (97.0â%). In the phylogenetic tree based on 16S rRNA gene sequences, strain CPCC 100842T formed a distinct phylogenetic subclade within the genus Simplicispira. The major cellular fatty acids were as C16â:â0 and summed feature 3 (C16â:â1 ω7c/C16â:â1ω6c). Q-8 was detected as the only respiratory quinone. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid and glycolipid were found in the polar lipid extraction. The genomic DNA G+C content was 67.4 mol%. The average nucleotide identity value was 80.4â% by comparing the draft genome sequences of strain CPCC 100842T and S. metamorpha DSM 1837T. The DNA-DNA hybridization result between strain CPCC 100842T and S. metamorpha DSM 1837T showed 37±3â% genomic relatedness. On the basis of the genotypic analysis and phenotypic characteristics, we propose that strain CPCC 100842T represents a novel species of the genus Simplicispira in the family Comamonadaceae with the name Simplicispira lacusdiani sp. nov. Strain CPCC 100842T (=KCTC 52093T=DSM 102231T) is the type strain of the species.
Assuntos
Comamonadaceae/classificação , Água Doce/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, designated strain LAM9072T, was isolated from a sample of a sulfonylurea herbicide-degrading consortium enriched with saline soil. The optimal temperature and pH for the growth of strain LAM9072T were 35 °C and 7.0, respectively. Strain LAM9072T could grow in the presence of NaCl up to 9â% (w/v). Comparative analysis of the 16S rRNA gene sequences revealed that strain LAM9072T was closely related to members of the family Vibrionaceae, with the highest similarities to Photobacterium halotolerans MACL01T (97.7â%) and Photobacterium galatheae S2753T (97.7â%). Strain LAM9072T formed a distinct phylogenetic subclade within the genus Photobacterium in the 16S rRNA gene phylogenetic trees. The results of multi-locus sequence analysis revealed a distinct lineage with P. halotolerans MACL01T as its closest relative. The genomic G+C content was 50.2 mol%. The DNA-DNA hybridization values between strain LAM9072T and P. halotolerans LMG 22194T and P. galatheae LMG 28894T were 41.6 and 22.2â%, respectively. The average nucleotide identity values were 90.9 and 78.8â%, respectively, by comparing the draft genome sequences of strain LAM9072T and P. halotolerans LMG 22194T and P. galatheae LMG 28894T. The major fatty acids were summed feature 3 (C16â:â1ω6c and/or C16â:â1ω7c), C16â:â0 and summed feature 8 (C18â:â1ω7c and/or C18â:â1ω6c). Ubiquinone 8 was detected as the predominant respiratory quinone. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and four unidentified lipids. Based on its phenotypic characteristics and the results of genotypic analyses, we propose that strain LAM9072T represents a novel species, for which the name Photobacteriumsalinisoli sp. nov. is proposed. The type strain is LAM9072T (=ACCC 19961T=JCM 30852T).
Assuntos
Herbicidas/metabolismo , Photobacterium/classificação , Filogenia , Microbiologia do Solo , Compostos de Sulfonilureia/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , Biodegradação Ambiental , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Photobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
Ovarian cancer G-protein-coupled receptor 1 (OGR1), an acid-sensitive receptor, plays a key proton-sensing role through stimulation of inositol phosphate formation. Avascular necrosis of the femoral head is characterized by apoptosis of bone cells mainly resulting from deficient local blood perfusion, eventually leading to acidification with disruption of endothelial progenitor cells' (EPCs) function. However, whether EPCs express OGR1 has not been demonstrated. This study attempted to whether OGR1 mediates the effects of acid on proliferation, migration, and angiogenesis in EPCs. FITC-UEA-I and Dil-Ac-LDL double-staining methods were used to identify EPCs. Expression of OGR1 was analyzed by RT-PCR (reverse transcription PCR) and western blot after incubation in media ranging in pH, cell counting kit-8 and cell cycle analysis were used to analyze proliferation and cell cycle distribution. Scratch test, transwell migration assay, and tube formation experiments were performed to analyze migration and vascularization of EPCs after silencing OGR1 with small interfering RNA (siRNA). The result show EPCs were positive for FITC-UEA-I and Dil-Ac-LDL double-staining and expressed OGR1. The expression of OGR1 increased gradually with decreased pH and was highest in pH 6.4 medium. Incubation in pH 6.4 medium inhibited proliferation of EPCs and caused cell cycle arrest. Silencing of OGR1 using siRNA partially reversed the effect of acidic environment on EPCs. Migration and angiogenesis of EPCs were inhibited in pH 6.4 medium, and silencing of OGR1 partially reversed this effect. The results demonstrated expression of OGR1 in EPCs, and the OGR1 mediated the effects of acidic environment on proliferation, migration, and angiogenesis of EPCs.
Assuntos
Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB CRESUMO
A novel aerobic bacterium, designated strain LAM9153T, was isolated from a saline soil sample collected from Lingxian County, Shandong Province, China. Cells of strain LAM9153T were observed to be Gram-stain negative, non-motile, non-spore-forming and rod-shaped. The new isolate grew optimally at 30-35 °C, pH 7.0 and 0.5% of NaCl concentration (w/v). According to the phylogenetic analysis based on the 16S rRNA gene sequence, strain LAM9153T shares high similarity with Chitinophaga terrae Gsoil 238T (96.9%) and Chitinophaga niabensis JS 13-10T (95.9%), forming a subcluster with C. terrae Gsoil 238T, Chitinophaga cymbidii R156-2T, C. niabensis JS 13-10T and Chitinophaga soli Gsoil 219T in the phylogenetic tree. The major cellular fatty acids (> 10%) were identified as iso-C15:0, iso-C17:0 3-OH and summed features 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant respiratory quinone was identified as menaquinone MK-7. The polar lipids consisted of phosphatidylethanolamine, aminophospholipid, three unidentified aminolipids and five unidentified lipids. The genomic DNA G+C content was determined to be 53.2 ± 1.6 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain LAM9153T is concluded to represent a novel species of the genus Chitinophaga, for which the name Chitinophaga salinisoli sp. nov. is proposed. The type strain is LAM9153T (= ACCC 19960T = JCM 30847T).
Assuntos
Bacteroidetes/classificação , Salinidade , Microbiologia do Solo , Solo/química , Bacteroidetes/citologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/fisiologia , Composição de Bases , Metabolômica/métodos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Phenolic inhibitors generated during alkaline pretreatment of lignocellulosic biomasses significantly hinder bacterial growth and subsequent biofuel and biochemical production. Water rinsing is an efficient method for removing these compounds. Nevertheless, this method often generates a great amount of wastewater, and leads to the loss of solid fiber particles and fermentable sugars. Kurthia huakuii LAM0618T, a recently identified microorganism, was herein shown to be able to efficiently transform phenolic compounds (syringaldehyde, hydroxybenzaldehyde, and vanillin) into less toxic acids. Taking advantage of these properties, a biodetoxification method was established by inoculating K. huakuii LAM0618T into the NH3/H2O2-pretreated unwashed corn stover to degrade phenolic inhibitors and weak acids generated during the pretreatment. Subsequently, 33.47 and 17.91 g/L lactic acid was produced by Bacillus coagulans LA204 at 50 °C through simultaneous saccharification and fermentation (SSF) from 8% (w/w) of NH3/H2O2-pretreated corn stover with or without K. huakuii LAM0618T-biodetoxification, indicating biodetoxification significantly increased lactic acid titer and yield. Importantly, using 15% (w/w) of the NH3/H2O2-pretreated K. huakuii LAM0618T-biodetoxified corn stover as a substrate through fed-batch simultaneous saccharification and fermentation, high titer and high yield of lactic acid (84.49 g/L and 0.56 g/g corn stover, respectively, with a productivity of 0.88 g/L/h) were produced by Bacillus coagulans LA204. Therefore, this study reported the first study on biodetoxification of alkaline-pretreated lignocellulosic material, and this biodetoxification method could replace water rinsing for removal of phenolic inhibitors and applied in biofuel and biochemical production using the alkaline-pretreated lignocellulosic bioresources.
Assuntos
Ácido Láctico/química , Lignina/química , Planococáceas/fisiologia , Zea mays/química , Técnicas de Cultura Celular por Lotes , Benzaldeídos/química , Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , FermentaçãoRESUMO
We isolated a Gram-stain-negative, pink-pigmented, motile, pleomorphic, extremely halophilic archaeon from the brine-seawater interface of Discovery Deep in the Saudi Arabian Red Sea. This strain, designated SB9T, was capable of growth within a wide range of temperatures and salinity, but required MgCl2. Cells lysed in distilled water, but at 7.0â% (w/v) NaCl cell lysis was prevented. The major polar lipids from strain SB9T were phosphatidylglycerol, phosphatidylglycerolphosphate methyl ester, sulfated mannosyl glucosyl diether, mannosyl glucosyl diether, an unidentified glycolipid and two unidentified phospholipids. The major respiratory quinones of strain SB9T were menaquinones MK8 (66â%) and MK8 (VIII-H2) (34â%). Analysis of the 16S rRNA gene sequence revealed that strain SB9T was closely related to species in the genera Halogranum and Haloplanus; in particular, it shared highest sequence similarity with the type strain of Halogranum rubrum (93.4â%), making it its closest known relative. The unfinished draft genome of strain SB9Twas 3 931 127 bp in size with a total G+C content of 62.53 mol% and contained 3917 ORFs, 50 tRNAs and eight rRNAs. Based on comparisons with currently available genomes, the highest average nucleotide identity value was 83â% to Halogranum salarium B-1T (GenBank accession no. GCA_000283335.1). These data indicate that this new isolate cannot be classified into any recognized genera of the family Haloferacaceae, and therefore strain SB9T is considered to be a representative of a novel species of a new genus within this family, for which the name Haloprofundus marisrubri gen. nov., sp. nov. is proposed. The type strain of Haloprofundus marisrubri is SB9T (=JCM 19565T=CGMCC 1.14959T).