Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020169

RESUMO

Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials1-4. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions5,6. However, the exact nature and magnitude of these couplings have remained unknown so far. Here we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic. We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the dipolar and magnetic orders of the material with a suite of ultrafast optical probes. Our data show a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further show that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin-orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable unique functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds.

2.
Nature ; 625(7995): 483-488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233620

RESUMO

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

3.
Nature ; 606(7912): 41-48, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614214

RESUMO

An important goal of modern condensed-matter physics involves the search for states of matter with emergent properties and desirable functionalities. Although the tools for material design remain relatively limited, notable advances have been recently achieved by controlling interactions at heterointerfaces, precise alignment of low-dimensional materials and the use of extreme pressures. Here we highlight a paradigm based on controlling light-matter interactions, which provides a way to manipulate and synthesize strongly correlated quantum matter. We consider the case in which both electron-electron and electron-photon interactions are strong and give rise to a variety of phenomena. Photon-mediated superconductivity, cavity fractional quantum Hall physics and optically driven topological phenomena in low dimensions are among the frontiers discussed in this Perspective, which highlights a field that we term here 'strongly correlated electron-photon science'.

4.
Proc Natl Acad Sci U S A ; 121(16): e2321665121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593078

RESUMO

Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.

5.
Proc Natl Acad Sci U S A ; 120(17): e2221688120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071679

RESUMO

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta2NiSe5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta2NiSe5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.

6.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253690

RESUMO

Great efforts have been made to develop precision medicine-based treatments using machine learning. In this field, where the goal is to provide the optimal treatment for each patient based on his/her medical history and genomic characteristics, it is not sufficient to make excellent predictions. The challenge is to understand and trust the model's decisions while also being able to easily implement it. However, one of the issues with machine learning algorithms-particularly deep learning-is their lack of interpretability. This review compares six different machine learning methods to provide guidance for defining interpretability by focusing on accuracy, multi-omics capability, explainability and implementability. Our selection of algorithms includes tree-, regression- and kernel-based methods, which we selected for their ease of interpretation for the clinician. We also included two novel explainable methods in the comparison. No significant differences in accuracy were observed when comparing the methods, but an improvement was observed when using gene expression instead of mutational status as input for these methods. We concentrated on the current intriguing challenge: model comprehension and ease of use. Our comparison suggests that the tree-based methods are the most interpretable of those tested.


Assuntos
Oncologia , Neoplasias , Feminino , Humanos , Masculino , Neoplasias/genética , Algoritmos , Genômica , Aprendizado de Máquina
7.
Nat Mater ; 23(6): 796-802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38172546

RESUMO

Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice. Here we employ nonlinear terahertz spectroscopy to disentangle such obscurants through measurement of the quantum dynamics. We target Ta2NiSe5, a putative room-temperature excitonic insulator in which electron-lattice coupling dominates the structural transition (Tc = 326 K), hindering identification of excitonic correlations. A pronounced increase in the terahertz reflectivity manifests following photoexcitation and exhibits a Bose-Einstein condensation-like temperature dependence well below the Tc, suggesting an approach to monitor the exciton condensate dynamics. Nonetheless, dynamic condensate-phonon coupling remains as evidenced by peaks in the enhanced reflectivity spectrum at select infrared-active phonon frequencies, indicating that parametric reflectivity enhancement arises from phonon squeezing. Our results highlight that coherent dynamics can drive parametric stimulated emission.

8.
Chem Rev ; 123(19): 11191-11229, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729114

RESUMO

In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.

9.
Nature ; 572(7767): 95-100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367030

RESUMO

The electronic properties of heterostructures of atomically thin van der Waals crystals can be modified substantially by moiré superlattice potentials from an interlayer twist between crystals1,2. Moiré tuning of the band structure has led to the recent discovery of superconductivity3,4 and correlated insulating phases5 in twisted bilayer graphene (TBG) near the 'magic angle' of twist of about 1.1 degrees, with a phase diagram reminiscent of high-transition-temperature superconductors. Here we directly map the atomic-scale structural and electronic properties of TBG near the magic angle using scanning tunnelling microscopy and spectroscopy. We observe two distinct van Hove singularities (VHSs) in the local density of states around the magic angle, with an energy separation of 57 millielectronvolts that drops to 40 millielectronvolts with high electron/hole doping. Unexpectedly, the VHS energy separation continues to decrease with decreasing twist angle, with a lowest value of 7 to 13 millielectronvolts at a magic angle of 0.79 degrees. More crucial to the correlated behaviour of this material, we find that at the magic angle, the ratio of the Coulomb interaction to the bandwidth of each individual VHS (U/t) is maximized, which is optimal for electronic Cooper pairing mechanisms. When doped near the half-moiré-band filling, a correlation-induced gap splits the conduction VHS with a maximum size of 6.5 millielectronvolts at 1.15 degrees, dropping to 4 millielectronvolts at 0.79 degrees. We capture the doping-dependent and angle-dependent spectroscopy results using a Hartree-Fock model, which allows us to extract the on-site and nearest-neighbour Coulomb interactions. This analysis yields a U/t of order unity indicating that magic-angle TBG is moderately correlated. In addition, scanning tunnelling spectroscopy maps reveal an energy- and doping-dependent three-fold rotational-symmetry breaking of the local density of states in TBG, with the strongest symmetry breaking near the Fermi level and further enhanced when doped to the correlated gap regime. This indicates the presence of a strong electronic nematic susceptibility or even nematic order in TBG in regions of the phase diagram where superconductivity is observed.

10.
Proc Natl Acad Sci U S A ; 119(25): e2204219119, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704757

RESUMO

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-boron-nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons and no longer comprises discrete harmonic orders, but rather a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as specific bond compression or stretching dynamics. We further show that in the regime where the excited phonon period and the pulse duration are of the same order of magnitude, the HHG process becomes sensitive to the carrier-envelope phase (CEP) of the driving field, even though the pulse duration is so long that no such sensitivity is observed in the absence of coherent phonons. The degree of CEP sensitivity versus pump-probe delay is shown to be a highly selective measure for instantaneous structural changes in the lattice, providing an approach for ultrafast multidimensional HHG spectroscopy. Remarkably, the obtained temporal resolution for phonon dynamics is ∼1 femtosecond, which is much shorter than the probe pulse duration because of the inherent subcycle contrast mechanism. Our work paves the way toward routes of probing phonons and ultrafast material structural changes with subcycle temporal resolution and provides a mechanism for controlling the HHG spectrum.

11.
J Am Chem Soc ; 146(23): 15879-15886, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813680

RESUMO

The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.

12.
Nat Mater ; 22(12): 1478-1484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857887

RESUMO

Strongly bound excitons determine light-matter interactions in van der Waals heterostructures of two-dimensional semiconductors. Unlike fundamental particles, quasiparticles in condensed matter, such as excitons, can be tailored to alter their interactions and realize emergent quantum phases. Here, using a WS2/WSe2/WS2 heterotrilayer, we create a quantum superposition of oppositely oriented dipolar excitons-a quadrupolar exciton-wherein an electron is layer-hybridized in WS2 layers while the hole localizes in WSe2. In contrast to dipolar excitons, symmetric quadrupolar excitons only redshift in an out-of-plane electric field. At higher densities and a finite electric field, the nonlinear Stark shift of quadrupolar excitons becomes linear, signalling a transition to dipolar excitons resulting from exciton-exciton interactions, while at a vanishing electric field, the reduced exchange interaction suggests antiferroelectric correlations between dipolar excitons. Our results present van der Waals heterotrilayers as a field-tunable platform to engineer light-matter interactions and explore quantum phase transitions between spontaneously ordered many-exciton phases.

13.
Phys Rev Lett ; 132(1): 016603, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242673

RESUMO

Interactions between light and matter allow the realization of out-of-equilibrium states in quantum solids. In particular, nonlinear phononics is one of the most efficient approaches to realizing the stationary electronic state in nonequilibrium. Herein, by an extended ab initio molecular dynamics method, we identify that long-lived light-driven quasistationary geometry could stabilize the topological nature in the material family of HgTe compounds. We show that coherent excitation of the infrared-active phonon mode results in a distortion of the atomic geometry with a lifetime of several picoseconds. We show that four Weyl points are located exactly at the Fermi level in this nonequilibrium geometry, making it an ideal long-lived metastable Weyl semimetal. We propose that such a metastable topological phase can be identified by photoelectron spectroscopy of the Fermi arc surface states or ultrafast pump-probe transport measurements of the nonlinear Hall effect.

14.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189616

RESUMO

We propose exchanging the energy functionals in ground-state density-functional theory with physically equivalent exact force expressions as a new promising route toward approximations to the exchange-correlation potential and energy. In analogy to the usual energy-based procedure, we split the force difference between the interacting and auxiliary Kohn-Sham system into a Hartree, an exchange, and a correlation force. The corresponding scalar potential is obtained by solving a Poisson equation, while an additional transverse part of the force yields a vector potential. These vector potentials obey an exact constraint between the exchange and correlation contribution and can further be related to the atomic shell structure. Numerically, the force-based local-exchange potential and the corresponding exchange energy compare well with the numerically more involved optimized effective potential method. Overall, the force-based method has several benefits when compared to the usual energy-based approach and opens a route toward numerically inexpensive nonlocal and (in the time-dependent case) nonadiabatic approximations.

15.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421067

RESUMO

The exchange-only virial relation due to Levy and Perdew is revisited. Invoking the adiabatic connection, we introduce the exchange energy in terms of the right-derivative of the universal density functional w.r.t. the coupling strength λ at λ = 0. This agrees with the Levy-Perdew definition of the exchange energy as a high-density limit of the full exchange-correlation energy. By relying on v-representability for a fixed density at varying coupling strength, we prove an exchange-only virial relation without an explicit local-exchange potential. Instead, the relation is in terms of a limit (λ ↘ 0) involving the exchange-correlation potential vxcλ, which exists by assumption of v-representability. On the other hand, a local-exchange potential vx is not warranted to exist as such a limit.

16.
Proc Natl Acad Sci U S A ; 118(41)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625493

RESUMO

Strong light-matter coupling provides a promising path for the control of quantum matter where the latter is routinely described from first principles. However, combining the quantized nature of light with this ab initio tool set is challenging and merely developing as the coupled light-matter Hilbert space is conceptually different and computational cost quickly becomes overwhelming. In this work, we provide a nonperturbative photon-free formulation of quantum electrodynamics (QED) in the long-wavelength limit, which is formulated solely on the matter Hilbert space and can serve as an accurate starting point for such ab initio methods. The present formulation is an extension of quantum mechanics that recovers the exact results of QED for the zero- and infinite-coupling limit and the infinite-frequency as well as the homogeneous limit, and we can constructively increase its accuracy. We show how this formulation can be used to devise approximations for quantum-electrodynamical density-functional theory (QEDFT), which in turn also allows us to extend the ansatz to the full minimal-coupling problem and to nonadiabatic situations. Finally, we provide a simple local density-type functional that takes the strong coupling to the transverse photon degrees of freedom into account and includes the correct frequency and polarization dependence. This QEDFT functional accounts for the quantized nature of light while remaining computationally simple enough to allow its application to a large range of systems. All approximations allow the seamless application to periodic systems.

17.
Proc Natl Acad Sci U S A ; 118(31)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34315818

RESUMO

Optical cavities confine light on a small region in space, which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first-principles calculations, that such light-matter coupling induces a change of the collective phase from quantum paraelectric to ferroelectric in the [Formula: see text] ground state, which has thus far only been achieved in out-of-equilibrium strongly excited conditions [X. Li et al., Science 364, 1079-1082 (2019) and T. F. Nova, A. S. Disa, M. Fechner, A. Cavalleri, Science 364, 1075-1079 (2019)]. This is a light-matter hybrid ground state which can only exist because of the coupling to the vacuum fluctuations of light, a photo ground state The phase transition is accompanied by changes in the crystal structure, showing that fundamental ground state properties of materials can be controlled via strong light-matter coupling. Such a control of quantum states enables the tailoring of materials properties or even the design of novel materials purely by exposing them to confined light.

18.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468646

RESUMO

Atomically thin van der Waals materials stacked with an interlayer twist have proven to be an excellent platform toward achieving gate-tunable correlated phenomena linked to the formation of flat electronic bands. In this work we demonstrate the formation of emergent correlated phases in multilayer rhombohedral graphene--a simple material that also exhibits a flat electronic band edge but without the need of having a moiré superlattice induced by twisted van der Waals layers. We show that two layers of bilayer graphene that are twisted by an arbitrary tiny angle host large (micrometer-scale) regions of uniform rhombohedral four-layer (ABCA) graphene that can be independently studied. Scanning tunneling spectroscopy reveals that ABCA graphene hosts an unprecedentedly sharp van Hove singularity of 3-5-meV half-width. We demonstrate that when this van Hove singularity straddles the Fermi level, a correlated many-body gap emerges with peak-to-peak value of 9.5 meV at charge neutrality. Mean-field theoretical calculations for model with short-ranged interactions indicate that two primary candidates for the appearance of this broken symmetry state are a charge-transfer excitonic insulator and a ferrimagnet. Finally, we show that ABCA graphene hosts surface topological helical edge states at natural interfaces with ABAB graphene which can be turned on and off with gate voltage, implying that small-angle twisted double-bilayer graphene is an ideal programmable topological quantum material.

19.
Nano Lett ; 23(16): 7568-7575, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578460

RESUMO

We study low-frequency linearly polarized laser-dressing in materials with valley (graphene and hexagonal-Boron-Nitride) and topological (Dirac- and Weyl-semimetals) properties. In Dirac-like linearly dispersing bands, the laser substantially moves the Dirac nodes away from their original position, and the movement direction can be fully controlled by rotating the laser polarization. We prove that this effect originates from band nonlinearities away from the Dirac nodes. We further demonstrate that this physical mechanism is widely applicable and can move the positions of the valley minima in hexagonal materials to tune valley selectivity, split and move Weyl cones in higher-order Weyl semimetals, and merge Dirac nodes in three-dimensional Dirac semimetals. The model results are validated with ab initio calculations. Our results directly affect efforts for exploring light-dressed electronic structure, suggesting that one can benefit from band nonlinearity for tailoring material properties, and highlight the importance of the full band structure in nonlinear optical phenomena in solids.

20.
Nano Lett ; 23(18): 8712-8718, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37695730

RESUMO

Laser-induced ultrafast demagnetization is a phenomenon of utmost interest and attracts significant attention because it enables potential applications in ultrafast optoelectronics and spintronics. As a spin-orbit coupling assisted magnetic insulator, α-RuCl3 provides an attractive platform to explore the physics of electronic correlations and unconventional magnetism. Using time-dependent density functional theory, we explore the ultrafast laser-induced dynamics of the electronic and magnetic structures in α-RuCl3. Our study unveils that laser pulses can introduce ultrafast demagnetizations, accompanied by an out-of-equilibrium insulator-to-metal transition in a few tens of femtoseconds. The spin response significantly depends on the laser wavelength and polarization on account of the electron correlations, band renormalizations, and charge redistributions. These findings provide physical insights into the coupling between the electronic and magnetic degrees of freedom in α-RuCl3 and shed light on suppressing the long-range magnetic orders and reaching a proximate spin liquid phase for two-dimensional magnets on an ultrafast time scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA