Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Monit Comput ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305449

RESUMO

Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. This monitoring can be done either invasively or non-invasively and intermittently vs. continuously. An invasive method is considered the gold standard and provides continuous measurement, but it carries higher risks of complications such as infection, bleeding, and thrombosis. Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.

2.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496617

RESUMO

Background and Objective: Detection of the dicrotic notch (DN) within a cardiac cycle is essential for assessment of cardiac output, calculation of pulse wave velocity, estimation of left ventricular ejection time, and supporting feature-based machine learning models for noninvasive blood pressure estimation, and hypotension, or hypertension prediction. In this study, we present a new algorithm based on the iterative envelope mean (IEM) method to detect automatically the DN in arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms. Methods: The algorithm was evaluated on both ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. The analysis involved a total of 1,171,288 cardiac cycles for ABP waveforms and 3,424,975 cardiac cycles for PPG waveforms. To evaluate the algorithm's performance, the systolic phase duration (SPD) was employed, which represents the duration from the onset of the systolic phase to the DN in the cardiac cycle. Correlation plots and regression analysis were used to compare the algorithm with an established DN detection technique (second derivative). The marking of the DN temporal location was carried out by an experienced researcher using the help of the 'find_peaks' function from the scipy PYTHON package, serving as a reference for the evaluation. The marking was visually validated by both an engineer and an anesthesiologist. The robustness of the algorithm was evaluated as the DN was made less visually distinct across signal-to-noise ratios (SNRs) ranging from -30 dB to -5 dB in both ABP and PPG waveforms. Results: The correlation between SPD estimated by the algorithm and that marked by the researcher is strong for both ABP (R2(87343) =.99, p<.001) and PPG (R2(86764) =.98, p<.001) waveforms. The algorithm had a lower mean error of dicrotic notch detection (s): 0.0047 (0.0029) for ABP waveforms and 0.0046 (0.0029) for PPG waveforms, compared to 0.0693 (0.0770) for ABP and 0.0968 (0.0909) for PPG waveforms for the established 2nd derivative method. The algorithm has high accuracy of DN detection for SNR of >= -9 dB for ABP waveforms and >= -12 dB for PPG waveforms indicating robust performance in detecting the DN when it is less visibly distinct. Conclusion: Our proposed IEM- based algorithm can detect DN in both ABP and PPG waveforms with low computational cost, even in cases where it is not distinctly defined within a cardiac cycle of the waveform ('DN-less signals'). The algorithm can potentially serve as a valuable, fast, and reliable tool for extracting features from ABP and PPG waveforms. It can be especially beneficial in medical applications where DN-based features, such as SPD, diastolic phase duration, and DN amplitude, play a significant role.

3.
Comput Methods Programs Biomed ; 254: 108283, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901273

RESUMO

BACKGROUND AND OBJECTIVE: Detection of the dicrotic notch (DN) within a cardiac cycle is essential for assessment of cardiac output, calculation of pulse wave velocity, estimation of left ventricular ejection time, and supporting feature-based machine learning models for noninvasive blood pressure estimation, and hypotension, or hypertension prediction. In this study, we present a new algorithm based on the iterative envelope mean (IEM) method to detect automatically the DN in arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms. METHODS: The algorithm was evaluated on both ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. The analysis involved a total of 1,171,288 cardiac cycles for ABP waveforms and 3,424,975 cardiac cycles for PPG waveforms. To evaluate the algorithm's performance, the systolic phase duration (SPD) was employed, which represents the duration from the onset of the systolic phase to the DN in the cardiac cycle. Correlation plots and regression analysis were used to compare the algorithm against marked DN detection, while box plots and Bland-Altman plots were used to compare its performance with both marked DN detection and an established DN detection technique (second derivative). The marking of the DN temporal location was carried out by an experienced researcher using the help of the 'find_peaks' function from the scipy Python package, serving as a reference for the evaluation. The marking was visually validated by both an engineer and an anesthesiologist. The robustness of the algorithm was evaluated as the DN was made less visually distinct across signal-to-noise ratios (SNRs) ranging from -30 dB to -5 dB in both ABP and PPG waveforms. RESULTS: The correlation between SPD estimated by the algorithm and that marked by the researcher is strong for both ABP (R2(87,343) =0.99, p<.001) and PPG (R2(86,764) =0.98, p<.001) waveforms. The algorithm had a lower mean error of DN detection (s): 0.0047 (0.0029) for ABP waveforms and 0.0046 (0.0029) for PPG waveforms, compared to 0.0693 (0.0770) for ABP and 0.0968 (0.0909) for PPG waveforms for the established 2nd derivative method. The algorithm has high rate of detectability of DN detection for SNR of >= -9 dB for ABP waveforms and >= -12 dB for PPG waveforms indicating robust performance in detecting the DN when it is less visibly distinct. CONCLUSION: Our proposed IEM- based algorithm can detect DN in both ABP and PPG waveforms with low computational cost, even in cases where it is not distinctly defined within a cardiac cycle of the waveform ('DN-less signals'). The algorithm can potentially serve as a valuable, fast, and reliable tool for extracting features from ABP and PPG waveforms. It can be especially beneficial in medical applications where DN-based features, such as SPD, diastolic phase duration, and DN amplitude, play a significant role.


Assuntos
Algoritmos , Fotopletismografia , Fotopletismografia/métodos , Humanos , Pressão Arterial , Determinação da Pressão Arterial/métodos , Análise de Onda de Pulso/métodos , Processamento de Sinais Assistido por Computador
4.
bioRxiv ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39464085

RESUMO

Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.

5.
Nat Biomed Eng ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354052

RESUMO

The application of machine learning to tasks involving volumetric biomedical imaging is constrained by the limited availability of annotated datasets of three-dimensional (3D) scans for model training. Here we report a deep-learning model pre-trained on 2D scans (for which annotated data are relatively abundant) that accurately predicts disease-risk factors from 3D medical-scan modalities. The model, which we named SLIViT (for 'slice integration by vision transformer'), preprocesses a given volumetric scan into 2D images, extracts their feature map and integrates it into a single prediction. We evaluated the model in eight different learning tasks, including classification and regression for six datasets involving four volumetric imaging modalities (computed tomography, magnetic resonance imaging, optical coherence tomography and ultrasound). SLIViT consistently outperformed domain-specific state-of-the-art models and was typically as accurate as clinical specialists who had spent considerable time manually annotating the analysed scans. Automating diagnosis tasks involving volumetric scans may save valuable clinician hours, reduce data acquisition costs and duration, and help expedite medical research and clinical applications.

6.
JAMIA Open ; 6(3): ooad053, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37501917

RESUMO

Objectives: To test the association between the initial red blood cell distribution width (RDW) value in the emergency department (ED) and hospital admission and, among those admitted, in-hospital mortality. Materials and Methods: We perform a retrospective analysis of 210 930 adult ED visits with complete blood count results from March 2013 to February 2022. Primary outcomes were hospital admission and in-hospital mortality. Variables for each visit included demographics, comorbidities, vital signs, basic metabolic panel, complete blood count, and final diagnosis. The association of each outcome with the initial RDW value was calculated across 3 age groups (<45, 45-65, and >65) as well as across 374 diagnosis categories. Logistic regression (LR) and XGBoost models using all variables excluding final diagnoses were built to test whether RDW was a highly weighted and informative predictor for each outcome. Finally, simplified models using only age, sex, and vital signs were built to test whether RDW had additive predictive value. Results: Compared to that of discharged visits (mean [SD]: 13.8 [2.03]), RDW was significantly elevated in visits that resulted in admission (15.1 [2.72]) and, among admissions, those resulting in intensive care unit stay (15.3 [2.88]) and/or death (16.8 [3.25]). This relationship held across age groups as well as across various diagnosis categories. An RDW >16 achieved 90% specificity for hospital admission, while an RDW >18.5 achieved 90% specificity for in-hospital mortality. LR achieved a test area under the curve (AUC) of 0.77 (95% confidence interval [CI] 0.77-0.78) for hospital admission and 0.85 (95% CI 0.81-0.88) for in-hospital mortality, while XGBoost achieved a test AUC of 0.90 (95% CI 0.89-0.90) for hospital admission and 0.96 (95% CI 0.94-0.97) for in-hospital mortality. RDW had high scaled weights and information gain for both outcomes and had additive value in simplified models predicting hospital admission. Discussion: Elevated RDW, previously associated with mortality in myocardial infarction, pulmonary embolism, heart failure, sepsis, and COVID-19, is associated with hospital admission and in-hospital mortality across all-cause adult ED visits. Used alone, elevated RDW may be a specific, but not sensitive, test for both outcomes, with multivariate LR and XGBoost models showing significantly improved test characteristics. Conclusions: RDW, a component of the complete blood count panel routinely ordered as the initial workup for the undifferentiated patient, may be a generalizable biomarker for acuity in the ED.

7.
PLOS Digit Health ; 2(2): e0000106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36812608

RESUMO

Age-related Macular Degeneration (AMD) is a major cause of irreversible vision loss in individuals over 55 years old in the United States. One of the late-stage manifestations of AMD, and a major cause of vision loss, is the development of exudative macular neovascularization (MNV). Optical Coherence Tomography (OCT) is the gold standard to identify fluid at different levels within the retina. The presence of fluid is considered the hallmark to define the presence of disease activity. Anti-vascular growth factor (anti-VEGF) injections can be used to treat exudative MNV. However, given the limitations of anti-VEGF treatment, as burdensome need for frequent visits and repeated injections to sustain efficacy, limited durability of the treatment, poor or no response, there is a great interest in detecting early biomarkers associated with a higher risk for AMD progression to exudative forms in order to optimize the design of early intervention clinical trials. The annotation of structural biomarkers on optical coherence tomography (OCT) B-scans is a laborious, complex and time-consuming process, and discrepancies between human graders can introduce variability into this assessment. To address this issue, a deep-learning model (SLIVER-net) was proposed, which could identify AMD biomarkers on structural OCT volumes with high precision and without human supervision. However, the validation was performed on a small dataset, and the true predictive power of these detected biomarkers in the context of a large cohort has not been evaluated. In this retrospective cohort study, we perform the largest-scale validation of these biomarkers to date. We also assess how these features combined with other EHR data (demographics, comorbidities, etc) affect and/or improve the prediction performance relative to known factors. Our hypothesis is that these biomarkers can be identified by a machine learning algorithm without human supervision, in a way that they preserve their predictive nature. The way we test this hypothesis is by building several machine learning models utilizing these machine-read biomarkers and assessing their added predictive power. We found that not only can we show that the machine-read OCT B-scan biomarkers are predictive of AMD progression, we also observe that our proposed combined OCT and EHR data-based algorithm outperforms the state-of-the-art solution in clinically relevant metrics and provides actionable information which has the potential to improve patient care. In addition, it provides a framework for automated large-scale processing of OCT volumes, making it possible to analyze vast archives without human supervision.

8.
Crit Care Clin ; 39(4): 675-687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704333

RESUMO

Perioperative morbidity and mortality are significantly associated with both static and dynamic perioperative factors. The studies investigating static perioperative factors have been reported; however, there are a limited number of previous studies and data sets analyzing dynamic perioperative factors, including physiologic waveforms, despite its clinical importance. To fill the gap, the authors introduce a novel large size perioperative data set: Machine Learning Of physiologic waveforms and electronic health Record Data (MLORD) data set. They also provide a concise tutorial on machine learning to illustrate predictive models trained on complex and diverse structures in the MLORD data set.


Assuntos
Registros Eletrônicos de Saúde , Aprendizado de Máquina , Humanos , Relevância Clínica
9.
Ophthalmol Retina ; 7(2): 118-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35995411

RESUMO

OBJECTIVE: To assess and validate a deep learning algorithm to automatically detect incomplete retinal pigment epithelial and outer retinal atrophy (iRORA) and complete retinal pigment epithelial and outer retinal atrophy (cRORA) in eyes with age-related macular degeneration. DESIGN: In a retrospective machine learning analysis, a deep learning model was trained to jointly classify the presence of iRORA and cRORA within a given B-scan. The algorithm was evaluated using 2 separate and independent datasets. PARTICIPANTS: OCT B-scan volumes from 71 patients with nonneovascular age-related macular degeneration captured at the Doheny-University of California Los Angeles Eye Centers and the following 2 external OCT B-scans testing datasets: (1) University of Pennsylvania, University of Miami, and Case Western Reserve University and (2) Doheny Image Reading Research Laboratory. METHODS: The images were annotated by an experienced grader for the presence of iRORA and cRORA. A Resnet18 model was trained to classify these annotations for each B-scan using OCT volumes collected at the Doheny-University of California Los Angeles Eye Centers. The model was applied to 2 testing datasets to assess out-of-sample model performance. MAIN OUTCOMES MEASURES: Model performance was quantified in terms of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). Sensitivity, specificity, and positive predictive value were also compared against additional clinician annotators. RESULTS: On an independently collected test set, consisting of 1117 volumes from the general population, the model predicted iRORA and cRORA presence within the entire volume with nearly perfect AUROC performance and AUPRC scores (iRORA, 0.61; 95% confidence interval [CI] [0.45, 0.82]: cRORA, 0.83; 95% CI [0.68, 0.95]). On another independently collected set, consisting of 60 OCT B-scans enriched for iRORA and cRORA lesions, the model performed with AUROC (iRORA: 0.68, 95% CI [0.54, 0.81]; cRORA: 0.84, 95% CI [0.75, 0.94]) and AUPRC (iRORA: 0.70, 95% CI [0.55, 0.86]; cRORA: 0.82, 95% CI [0.70, 0.93]). CONCLUSIONS: A deep learning model can accurately and precisely identify both iRORA and cRORA lesions within the OCT B-scan volume. The model can achieve similar sensitivity compared with human graders, which potentially obviates a laborious and time-consuming annotation process and could be developed into a diagnostic screening tool.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Estudos Retrospectivos , Degeneração Retiniana/patologia , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Aprendizado de Máquina , Atrofia
10.
Res Sq ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045283

RESUMO

We present SLIViT, a deep-learning framework that accurately measures disease-related risk factors in volumetric biomedical imaging, such as magnetic resonance imaging (MRI) scans, optical coherence tomography (OCT) scans, and ultrasound videos. To evaluate SLIViT, we applied it to five different datasets of these three different data modalities tackling seven learning tasks (including both classification and regression) and found that it consistently and significantly outperforms domain-specific state-of-the-art models, typically improving performance (ROC AUC or correlation) by 0.1-0.4. Notably, compared to existing approaches, SLIViT can be applied even when only a small number of annotated training samples is available, which is often a constraint in medical applications. When trained on less than 700 annotated volumes, SLIViT obtained accuracy comparable to trained clinical specialists while reducing annotation time by a factor of 5,000 demonstrating its utility to automate and expedite ongoing research and other practical clinical scenarios.

11.
Sci Rep ; 11(1): 15755, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344934

RESUMO

In two-thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure (ABP) is monitored non-invasively but intermittently using a blood pressure cuff. Since even a few minutes of hypotension increases the risk of mortality and morbidity, for the remaining (high-risk) patients ABP is measured continuously using invasive devices, and derived values are extracted from the recorded waveforms. However, since invasive monitoring is associated with major complications (infection, bleeding, thrombosis), the ideal ABP monitor should be both non-invasive and continuous. With large volumes of high-fidelity physiological waveforms, it may be possible today to impute a physiological waveform from other available signals. Currently, the state-of-the-art approaches for ABP imputation only aim at intermittent systolic and diastolic blood pressure imputation, and there is no method that imputes the continuous ABP waveform. Here, we developed a novel approach to impute the continuous ABP waveform non-invasively using two continuously-monitored waveforms that are currently part of the standard-of-care, the electrocardiogram (ECG) and photo-plethysmogram (PPG), by adapting a deep learning architecture designed for image segmentation. Using over 150,000 min of data collected at two separate health systems from 463 patients, we demonstrate that our model provides a highly accurate prediction of the continuous ABP waveform (root mean square error 5.823 (95% CI 5.806-5.840) mmHg), as well as the derived systolic (mean difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference - 2.497 ± 3.785 mmHg) compared to arterial line measurements. Our approach can potentially be used to measure blood pressure continuously and non-invasively for all patients in the acute care setting, without the need for any additional instrumentation beyond the current standard-of-care.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial/métodos , Aprendizado Profundo , Hipertensão/fisiopatologia , Hipotensão/fisiopatologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Análise de Onda de Pulso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
PLoS One ; 15(9): e0239474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960917

RESUMO

Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pacientes Internados , Aprendizado de Máquina , Pneumonia Viral/diagnóstico , Adulto , Idoso , Área Sob a Curva , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Humanos , Los Angeles , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Pessoa de Meia-Idade , Pandemias , Reação em Cadeia da Polimerase , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA